Struct num::rational::RatioExperimental
[-]
[+]
[src]
pub struct Ratio<T> { // some fields omitted }
Represents the ratio between 2 numbers.
Methods
impl<T: Clone + Integer + PartialOrd> Ratio<T>
fn from_integer(t: T) -> Ratio<T>
Creates a ratio representing the integer t
.
fn new_raw(numer: T, denom: T) -> Ratio<T>
Creates a ratio without checking for denom == 0
or reducing.
fn new(numer: T, denom: T) -> Ratio<T>
Create a new Ratio. Fails if denom == 0
.
fn to_integer(&self) -> T
Converts to an integer.
fn numer<'a>(&'a self) -> &'a T
Gets an immutable reference to the numerator.
fn denom<'a>(&'a self) -> &'a T
Gets an immutable reference to the denominator.
fn is_integer(&self) -> bool
Returns true if the rational number is an integer (denominator is 1).
fn reduced(&self) -> Ratio<T>
Returns a reduce
d copy of self.
fn recip(&self) -> Ratio<T>
Returns the reciprocal.
fn floor(&self) -> Ratio<T>
Rounds towards minus infinity.
fn ceil(&self) -> Ratio<T>
Rounds towards plus infinity.
fn round(&self) -> Ratio<T>
Rounds to the nearest integer. Rounds half-way cases away from zero.
fn trunc(&self) -> Ratio<T>
Rounds towards zero.
fn fract(&self) -> Ratio<T>
Returns the fractional part of a number.
impl Ratio<BigInt>
fn from_float<T: Float>(f: T) -> Option<BigRational>
Converts a float into a rational number.
Trait Implementations
impl<T: Mul<T, T> + PartialEq> PartialEq for Ratio<T>
impl<T: Mul<T, T> + PartialOrd> PartialOrd for Ratio<T>
fn lt(&self, other: &Ratio<T>) -> bool
fn gt(&self, other: &Ratio<T>) -> bool
fn le(&self, other: &Ratio<T>) -> bool
fn ge(&self, other: &Ratio<T>) -> bool
fn partial_cmp(&self, other: &Ratio<T>) -> Option<Ordering>
impl<T: Mul<T, T> + Eq> Eq for Ratio<T>
fn assert_receiver_is_total_eq(&self)
impl<T: Mul<T, T> + Ord> Ord for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Mul<Ratio<T>, Ratio<T>> for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Div<Ratio<T>, Ratio<T>> for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Add<Ratio<T>, Ratio<T>> for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Sub<Ratio<T>, Ratio<T>> for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Rem<Ratio<T>, Ratio<T>> for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Neg<Ratio<T>> for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Zero for Ratio<T>
impl<T: Clone + Integer + PartialOrd> One for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Num for Ratio<T>
impl<T: Clone + Integer + PartialOrd> Signed for Ratio<T>
fn abs(&self) -> Ratio<T>
fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T>
fn signum(&self) -> Ratio<T>
fn is_positive(&self) -> bool
fn is_negative(&self) -> bool
impl<T: Show + Eq + One> Show for Ratio<T>
impl<T: FromStr + Clone + Integer + PartialOrd> FromStr for Ratio<T>
impl<T: FromStrRadix + Clone + Integer + PartialOrd> FromStrRadix for Ratio<T>
fn from_str_radix(s: &str, radix: uint) -> Option<Ratio<T>>
Parses numer/denom
where the numbers are in base radix
.