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The socle

The socle

Definition

The socle of a group G , written socG , is the subgroup generated by its
minimal normal subgroups.

Minimal normal subgroups are direct products of isomorphic simple groups.
socG is a direct product of (some of) the minimal normal subgroups.

Example

Let G = C12 generated by g . The normal
subgroups are shown. Hence

socG = ⟨g4⟩⟨g6⟩ = ⟨g2⟩ ∼= C3 × C2.

G

⟨g2⟩ ⟨g3⟩

⟨g4⟩ ⟨g6⟩

1
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The socle

Purpose of the socle

Improves performance for calculating other properties of groups:

▶ computing chief and composition series. (Cannon and Holt 1997)

▶ computing automorphism groups. (Cannon and Holt 2003)

▶ testing isomorphism of two groups. (Cannon and Holt 2003)

▶ finding conjugacy class representatives. (Cannon and Souvignier
1997)

▶ enumerating classes of subgroups. (Cannon, Cox, and Holt 2001;
Cannon and Holt 2004)

Huon Wilson Computing the socle of small finite permutation groups 3 / 16



Permutation groups

Permutation groups

Definition

A group G is a permutation group if it is a subgroup of Sym(Ω) for some
set Ω. For finite Ω, WLOG a subgroup of Sn for some n.

The degree of a permutation group is |Ω|. E.g. the degree of Sn = n.
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Computational complexity

Computational complexity
Why “small” groups?

It is reasonable and still interesting to restrict the degree of groups by
some upper bound (e.g. 106 or 107).

▶ In computing, slow algorithms have running time O(an), for some
a > 1 and “size” parameter n.

▶ Fast algorithms are linear O(n) or almost-linear, e.g., O(n log n).

▶ The runtime and memory use of many (permutation) group
algorithms are exponential or high-degree polynomial in the degree of
the input group, so computation in large degree groups is unfeasible.
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The algorithm

The algorithm: basic idea

Let G be a finite permutation group on Ω. Due to Cannon and Holt 1997.
There are 3 cases, with non-primitive cases reducing to the primitive one:

Intransitive Partition Ω into orbits of GΩ and pull back the socles of the
induced groups.

Imprimitive Find minimal block system(s) and pull back the socle(s) of
the induced groups; doing more computation if there is only
one minimal block system.

Primitive Decide which case of the O’Nan-Scott theorem G falls into,
using the Classification of Finite Simple Groups, and deduce
the socle with this information.
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Group-theoretic background Actions

Group actions

Definition

A group G is said to act on a set Ω if there is a group homomorphism
φ :G−→Sym(Ω). For g ∈ G , ω ∈ Ω, we write ωg := φ(g)(ω).

When considering the action of G on a set Ω we write GΩ. A permutation
group G ≤ Sym(Ω) has a natural action on Ω.

Let ω ∈ Ω. It has

▶ an orbit: ωG := {ωg | g ∈ G} ⊆ Ω

▶ a stabiliser: Gω := {g ∈ G |ωg = ω} < G

GΩ is transitive if there is only one orbit, that is, ωG
1 = ωG

2 for all
ω1, ω2 ∈ Ω.
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Group-theoretic background Blocks

Blocks and block system

Let GΩ be transitive.

Definition

A block is a set ∆ ⊆ Ω such that either ∆g = ∆ or ∆g ∩∆ = ∅ for all
g ∈ G .

The sets {∆g | g ∈ G} partition Ω and form a block system.

Example

Let G = C6 < S6 and Ω = {1, . . . , 6} with the natural action. Block
systems:

▶ {{1}, . . . , {6}}
▶ {{1, 4}, {2, 5}, {3, 6}}
▶ {{1, 3, 5}, {2, 4, 6}}
▶ {{1, . . . , 6}}
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Group-theoretic background Primitivity

Primitive groups

Definition

GΩ transitive is said to be primitive if the only blocks are trivial, that is,
singleton sets and Ω itself.

Example

G = C6, Ω = {1, . . . , 6} is not primitive: the non-trivial block systems we
saw previously.

Example

G = Sym(Ω) is primitive: for any set ∆ ⊂ Ω with |∆| ≥ 2 find δ1 ∈ ∆,
δ2 /∈ ∆, then g = (δ1δ2) ∈ G has ∆g ∩∆ ̸= ∅,∆.
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O’Nan-Scott theorem

O’Nan-Scott theorem

Theorem

If GΩ is primitive of degree n = |Ω|, then N := socG ∼= S1 × . . .× Sm
with Si ∼= S for some simple group S, and either

1. S ∼= Cp is abelian and N regular (Nω = 1), so N is an “earns”.

2. S is non-abelian. Let F = {S1, . . . , Sm}, one of the following holds:

2.1 Ω = Ωm
1 . G

Ω has the wreathed product action. There is a group H
such that HΩ1 is primitive and S ⊴ H.

2.2 n = |S |(a−1)b for some a, b integers with ab = m and a > 1, b ≥ 1.
The stabiliser Nω is a product of “diagonal subgroups”.

2.3 same as previous with a = 2, b = m/2, but GF has two orbits.
2.4 n = |S |m, m ≥ 6, Nω = 1.

All cases except 2.3 have G acting transitively by conjugation on F .
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The algorithm Primitive G

Case 1: Abelian socle factor

▶ If G has an elementary abelian regular normal subgroup (earns) T , we
are in the first case (that is, S = Cp for some prime p) and
socG = T .

▶ Use ERNIE (Neumann 1987) to check for the existence of (and find)
the earns.

Recall case 1: S ∼= Cp is abelian and N regular (Nω = 1), so N is an
“earns”.
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The algorithm Primitive G

Case 2: Non-abelian socle factor

If there is no earns, socG ∼= Sm with S non-abelian.
Find the final term T in the derived series of G (the soluble residual), i.e.

G ▷ [G ,G ] = G1 ▷ [G1,G1] = G2 ▷ . . . ▷ [Gk ,Gk ] = T

socG = T except for some situations in case 2.1.
Recall: the derived subgroup [G ,G ] is the subgroup generated by

{[g , h] | g ∈ G , h ∈ H} =
{
g−1h−1gh

∣∣ g ∈ G , h ∈ H
}
.
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The algorithm Primitive G

Distinguishing T ̸= socG

T ̸= socG happens exactly when there is t,m, u, s, n1 such that m ≥ 5,
|T | = tusm and n = nm1 where

▶ n1 = |Ω1| for some set Ω1

▶ s = |S | for some non-abelian simple group S that acts primitively on
Ω1 (this S is the socle factor)

▶ u is the order of a transitive group K of degree m that is perfect
([K ,K ] = K )

▶ t divides |Aut(S)/S |m

Recall case 2.1: Ω = Ωm
1 . G

Ω has the wreathed product action. There is a
group H such that HΩ1 is primitive and S ⊴ H.
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The algorithm Primitive G

Handling T ̸= socG

If we have T ̸= socG , then

▶ Take ω ∈ Ω, and find a shortest orbit ∆ of Gω on Ω \ {ω}.
▶ Find a block system Σ for G∆

ω such that GΣ
ω is primitive.

▶ socG is the normal closure in G of [U,U], where U is the stabiliser
Gω,∆\σ for any σ ∈ Σ.
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The algorithm Primitive G

Computing the socle factors

The (non-abelian) socle factors S1, . . . , Sm are also of interest. In most
cases, they are conjugate, so: find one, find them all.

▶ When T ̸= socG , S1 is the normal closure of [U,U] (U = Gω,∆\σ) in
socG

▶ When T = socG , either socG :
▶ is imprimitive: examine the kernel K of the action of socG on a

minimal block system. If n ̸= sm/2, then S1 = K , otherwise pull back
from factors of Kσ.

▶ has two factors (m = 2): just search for two distinct normal closures.
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