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The socle
Definition

The socle of a group G, written soc G, is the subgroup generated by its
minimal normal subgroups.

Minimal normal subgroups are direct products of isomorphic simple groups.
soc G is a direct product of (some of) the minimal normal subgroups.
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The socle
Definition

The socle of a group G, written soc G, is the subgroup generated by its
minimal normal subgroups.

Minimal normal subgroups are direct products of isomorphic simple groups.
soc G is a direct product of (some of) the minimal normal subgroups.

Example
G
Let G = Ci» generated by g. The normal 2/ \ 5
subgroups are shown. Hence (&%) (&)
N
socG = (g*)(g%) = () = G x . (g*) (g%
\/
1
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Purpose of the socle

Improves performance for calculating other properties of groups:
» computing chief and composition series. (Cannon and Holt 1997)
» computing automorphism groups. (Cannon and Holt 2003)
» testing isomorphism of two groups. (Cannon and Holt 2003)

» finding conjugacy class representatives. (Cannon and Souvignier
1997)

» enumerating classes of subgroups. (Cannon, Cox, and Holt 2001;
Cannon and Holt 2004)
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Permutation groups

Permutation groups

Definition
A group G is a permutation group if it is a subgroup of Sym(Q2) for some
set €. For finite Q, WLOG a subgroup of S, for some n.

The degree of a permutation group is |Q2|. E.g. the degree of S, = n.
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Computational complexity

Computational complexity
Why “small” groups?

It is reasonable and still interesting to restrict the degree of groups by
some upper bound (e.g. 10° or 107).
» In computing, slow algorithms have running time O(a"), for some
a > 1 and “size” parameter n.
» Fast algorithms are linear O(n) or almost-linear, e.g., O(nlog n).

» The runtime and memory use of many (permutation) group
algorithms are exponential or high-degree polynomial in the degree of
the input group, so computation in large degree groups is unfeasible.
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The algorithm: basic idea

Let G be a finite permutation group on €. Due to Cannon and Holt 1997.
There are 3 cases, with non-primitive cases reducing to the primitive one:

Intransitive Partition Q into orbits of G** and pull back the socles of the
induced groups.

Imprimitive Find minimal block system(s) and pull back the socle(s) of
the induced groups; doing more computation if there is only
one minimal block system.

Primitive Decide which case of the O'Nan-Scott theorem G falls into,
using the Classification of Finite Simple Groups, and deduce
the socle with this information.
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Group-theoretic background Actions

Group actions

Definition
A group G is said to act on a set 2 if there is a group homomorphism
©:G—Sym(Q). For g € G, w € Q, we write w8 := ¢(g)(w).

When considering the action of G on a set Q we write G. A permutation
group G < Sym() has a natural action on Q.
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Group-theoretic background Actions

Group actions

Definition
A group G is said to act on a set 2 if there is a group homomorphism
©:G—Sym(Q). For g € G, w € Q, we write w8 := ¢(g)(w).

When considering the action of G on a set Q we write G. A permutation
group G < Sym() has a natural action on Q.
Let w € Q. It has

> an orbit: w® = {w8|g € G} CQ

> a stabiliser: G, ={ge€ G|wE =w} <G

G is transitive if there is only one orbit, that is, le = sz for all

Wwi,wW € Q.
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g
Blocks and block system
Let G be transitive.
Definition

A block is a set A C Q such that either A8 = A or A8 N A = () for all
g €G.

The sets {A& | g € G} partition Q and form a block system.
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L Growptheoretic background L
Blocks and block system

Let G be transitive.

Definition

A block is a set A C Q such that either A8 = A or A8 N A = () for all
g €G.

The sets {A& | g € G} partition Q and form a block system.

Example

Let G = G < S and 2 = {1,...,6} with the natural action. Block
systems:

> {{1},....{6}}

> {{1,4},{2,5},{3,6}}
» {{1,3,5},{2,4,6}}
» {{1,...,6}}
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Group-theoretic background Primitivity

Primitive groups

Definition

G2 transitive is said to be primitive if the only blocks are trivial, that is,
singleton sets and Q itself.
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Group-theoretic background Primitivity

Primitive groups

Definition
G2 transitive is said to be primitive if the only blocks are trivial, that is,
singleton sets and Q itself.

Example
G =G, Q={1,...,6} is not primitive: the non-trivial block systems we
saw previously.

Example
G = Sym(Q) is primitive: for any set A C Q with |A| > 2 find 01 € A,
do ¢ A, then g = (0102) € G has A8 N A # (), A.
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O’'Nan-Scott theorem

Theorem

If G is primitive of degree n = ||, then N :==socG = 51 X ... X Sp,
with S; = S for some simple group S, and either

1. § = C, is abelian and N regular (N,, = 1), so N is an “earns”.

2. S is non-abelian. Let F = {S1,...,5m}, one of the following holds:
21 Q=Q7. G® has the wreathed product action. There is a group H
such that H™ is primitive and S < H.
22 n= \S|(afl)b for some a, b integers with ab= m and a > 1, b > 1.
The stabiliser N,, is a product of “diagonal subgroups”.

2.3 same as previous with a =2, b= m/2, but G7 has two orbits.
24 n=18", m>6, N, =1.

All cases except 2.3 have G acting transitively by conjugation on F.
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The algorithm

The algorithm: basic idea

Let G be a finite permutation group on €. Due to Cannon and Holt 1997.
There are 3 cases, with non-primitive cases reducing to the primitive one:
Intransitive Partition Q into orbits of G** and pull back the socles of the
induced groups.

Imprimitive Find minimal block system(s) and pull back the socle(s) of
the induced groups; doing more computation if there is only
one minimal block system.
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The algorithm Primitive G

Case 1: Abelian socle factor

» If G has an elementary abelian regular normal subgroup (earns) T, we
are in the first case (that is, S = C, for some prime p) and

socG =T.
» Use ERNIE (Neumann 1987) to check for the existence of (and find)

the earns.
Recall case 1: S = C, is abelian and N regular (N, = 1), so N is an

“earns” .
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The algorithm Primitive G

Case 2: Non-abelian socle factor

If there is no earns, soc G = S™ with S non-abelian.
Find the final term T in the derived series of G (the soluble residual), i.e.

GD[G,G]:G1[>[G1,G1]:G2[>...I>[Gk,Gk]:T

soc G = T except for some situations in case 2.1.
Recall: the derived subgroup [G, G] is the subgroup generated by

{lg.h|lg € G,he H} ={g*h™'gh|g € G, he H}.
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AR
Distinguishing T # soc G

T # soc G happens exactly when there is t, m, u, s, n; such that m > 5,
| T| = tus™ and n = n{" where
» n; = |Qy] for some set

» s = |S| for some non-abelian simple group S that acts primitively on
Q; (this S is the socle factor)

» u is the order of a transitive group K of degree m that is perfect
(IK. K] = K)
> t divides |Aut(S)/S|™

Recall case 2.1: Q = Q. G% has the wreathed product action. There is a
group H such that H% is primitive and S < H.
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Primitive ¢
Handling T # soc G

If we have T # soc G, then
» Take w € Q, and find a shortest orbit A of G, on Q\ {w}.
» Find a block system ¥ for G2 such that GZ is primitive.

» soc G is the normal closure in G of [U, U], where U is the stabiliser
Gy a\o forany o € L.
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The algorithm Primitive G

Computing the socle factors

The (non-abelian) socle factors S, ..., S, are also of interest. In most
cases, they are conjugate, so: find one, find them all.

» When T # soc G, S is the normal closure of [U, U] (U = G, a\,) in
soc G
» When T = soc G, either soc G:

> is imprimitive: examine the kernel K of the action of soc G on a
minimal block system. If n # s™/2, then S; = K, otherwise pull back
from factors of K.

» has two factors (m = 2): just search for two distinct normal closures.
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