Computing the socle of small finite permutation groups

Huon Wilson Supervisor: Prof. J. Cannon (assisted by Dr. W. Unger)

September 18, 2014

The socle

Definition

The socle of a group G, written soc G, is the subgroup generated by its minimal normal subgroups.

Minimal normal subgroups are direct products of isomorphic simple groups. soc G is a direct product of (some of) the minimal normal subgroups.

Example

Let $G = C_{12}$ generated by g. The normal subgroups are shown. Hence

$$\operatorname{soc} G = \langle g^4 \rangle \langle g^6 \rangle = \langle g^2 \rangle \cong \mathit{C}_3 \times \mathit{C}_2.$$

The socle

Definition

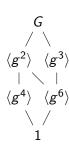
The socle of a group G, written soc G, is the subgroup generated by its minimal normal subgroups.

Minimal normal subgroups are direct products of isomorphic simple groups. soc G is a direct product of (some of) the minimal normal subgroups.

Example

Let $G = C_{12}$ generated by g. The normal subgroups are shown. Hence

$$\mathsf{soc}\ \mathit{G} = \langle \mathit{g}^{4} \rangle \langle \mathit{g}^{6} \rangle = \langle \mathit{g}^{2} \rangle \cong \mathit{C}_{3} \times \mathit{C}_{2}.$$



Purpose of the socle

Improves performance for calculating other properties of groups:

- computing chief and composition series. (Cannon and Holt 1997)
- computing automorphism groups. (Cannon and Holt 2003)
- ▶ testing isomorphism of two groups. (Cannon and Holt 2003)
- finding conjugacy class representatives. (Cannon and Souvignier 1997)
- ► enumerating classes of subgroups. (Cannon, Cox, and Holt 2001; Cannon and Holt 2004)

Permutation groups

Definition

A group G is a *permutation group* if it is a subgroup of $Sym(\Omega)$ for some set Ω . For finite Ω , WLOG a subgroup of S_n for some n.

The *degree* of a permutation group is $|\Omega|$. E.g. the degree of $S_n = n$.

Computational complexity

Why "small" groups?

It is reasonable and still interesting to restrict the degree of groups by some upper bound (e.g. 10^6 or 10^7).

- In computing, slow algorithms have running time $O(a^n)$, for some a > 1 and "size" parameter n.
- ► Fast algorithms are linear O(n) or almost-linear, e.g., $O(n \log n)$.
- ► The runtime and memory use of many (permutation) group algorithms are exponential or high-degree polynomial in the degree of the input group, so computation in large degree groups is unfeasible.

The algorithm: basic idea

Let G be a finite permutation group on Ω . Due to Cannon and Holt 1997. There are 3 cases, with non-primitive cases reducing to the primitive one:

Intransitive Partition Ω into orbits of G^{Ω} and pull back the socles of the induced groups.

Imprimitive Find minimal block system(s) and pull back the socle(s) of the induced groups; doing more computation if there is only one minimal block system.

Primitive Decide which case of the O'Nan-Scott theorem *G* falls into, using the Classification of Finite Simple Groups, and deduce the socle with this information.

Group actions

Definition

A group G is said to act on a set Ω if there is a group homomorphism $\varphi: G \longrightarrow \operatorname{Sym}(\Omega)$. For $g \in G$, $\omega \in \Omega$, we write $\omega^g := \varphi(g)(\omega)$.

When considering the action of G on a set Ω we write G^{Ω} . A permutation group $G \leq \operatorname{Sym}(\Omega)$ has a natural action on Ω .

Let $\omega \in \Omega$. It has

- ▶ an *orbit*: $\omega^G := \{\omega^g \mid g \in G\} \subseteq \Omega$
- ▶ a stabiliser: $G_{\omega} := \{g \in G \mid \omega^g = \omega\} < G$

 G^{Ω} is transitive if there is only one orbit, that is, $\omega_1^G = \omega_2^G$ for all $\omega_1, \omega_2 \in \Omega$.

Group actions

Definition

A group G is said to act on a set Ω if there is a group homomorphism $\varphi: G \longrightarrow \operatorname{Sym}(\Omega)$. For $g \in G$, $\omega \in \Omega$, we write $\omega^g := \varphi(g)(\omega)$.

When considering the action of G on a set Ω we write G^{Ω} . A permutation group $G \leq \operatorname{Sym}(\Omega)$ has a natural action on Ω .

Let $\omega \in \Omega$. It has

- ▶ an *orbit*: $\omega^{G} := \{\omega^{g} \mid g \in G\} \subseteq \Omega$
- lacksquare a stabiliser: $G_\omega := \{ g \in G \, | \, \omega^g = \omega \} < G$

 G^{Ω} is transitive if there is only one orbit, that is, $\omega_1^G = \omega_2^G$ for all $\omega_1, \omega_2 \in \Omega$.

Blocks and block system

Let G^{Ω} be transitive.

Definition

A *block* is a set $\Delta \subseteq \Omega$ such that either $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

The sets $\{\Delta^g \mid g \in G\}$ partition Ω and form a *block system*.

Example

Let $G = C_6 < S_6$ and $\Omega = \{1, \dots, 6\}$ with the natural action. Block systems:

- ► {{1},...,{6}}
- ► {{1,4},{2,5},{3,6}}
- ► {{1,3,5},{2,4,6}}
- ► {{1,...,6}}

Blocks and block system

Let G^{Ω} be transitive.

Definition

A *block* is a set $\Delta \subseteq \Omega$ such that either $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

The sets $\{\Delta^g \mid g \in G\}$ partition Ω and form a *block system*.

Example

Let $G = C_6 < S_6$ and $\Omega = \{1, \dots, 6\}$ with the natural action. Block systems:

- ► {{1},...,{6}}
- ► {{1,4},{2,5},{3,6}}
- ► {{1,3,5}, {2,4,6}}
- ► {{1,...,6}}

Primitive groups

Definition

 G^{Ω} transitive is said to be *primitive* if the only blocks are trivial, that is, singleton sets and Ω itself.

Example

 $G = C_6$, $\Omega = \{1, ..., 6\}$ is not primitive: the non-trivial block systems we saw previously.

Example

 $G = \operatorname{Sym}(\Omega)$ is primitive: for any set $\Delta \subset \Omega$ with $|\Delta| \geq 2$ find $\delta_1 \in \Delta$, $\delta_2 \notin \Delta$, then $g = (\delta_1 \delta_2) \in G$ has $\Delta^g \cap \Delta \neq \emptyset$, Δ .

Primitive groups

Definition

 G^{Ω} transitive is said to be *primitive* if the only blocks are trivial, that is, singleton sets and Ω itself.

Example

 $G=C_6$, $\Omega=\{1,\ldots,6\}$ is not primitive: the non-trivial block systems we saw previously.

Example

 $G = \operatorname{Sym}(\Omega)$ is primitive: for any set $\Delta \subset \Omega$ with $|\Delta| \geq 2$ find $\delta_1 \in \Delta$, $\delta_2 \notin \Delta$, then $g = (\delta_1 \delta_2) \in G$ has $\Delta^g \cap \Delta \neq \emptyset$, Δ .

O'Nan-Scott theorem

Theorem

If G^{Ω} is primitive of degree $n = |\Omega|$, then $N := \text{soc } G \cong S_1 \times \ldots \times S_m$ with $S_i \cong S$ for some simple group S, and either

- 1. $S \cong C_p$ is abelian and N regular $(N_\omega = 1)$, so N is an "earns".
- 2. S is non-abelian. Let $\mathcal{F} = \{S_1, \dots, S_m\}$, one of the following holds:
 - 2.1 $\Omega = \Omega_1^m$. G^{Ω} has the wreathed product action. There is a group H such that H^{Ω_1} is primitive and $S \leq H$.
 - 2.2 $n = |S|^{(a-1)b}$ for some a, b integers with ab = m and a > 1, $b \ge 1$. The stabiliser N_{ω} is a product of "diagonal subgroups".
 - **2.3** same as previous with a = 2, b = m/2, but $G^{\mathcal{F}}$ has two orbits.
 - **2.4** $n = |S|^m$, $m \ge 6$, $N_\omega = 1$.

All cases except 2.3 have G acting transitively by conjugation on \mathcal{F} .

O'Nan-Scott theorem

Theorem

If G^{Ω} is primitive of degree $n = |\Omega|$, then $N := \operatorname{soc} G \cong S_1 \times \ldots \times S_m$ with $S_i \cong S$ for some simple group S, and either

- 1. $S \cong C_p$ is abelian and N regular $(N_\omega = 1)$, so N is an "earns".
- 2. S is non-abelian. Let $\mathcal{F} = \{S_1, \dots, S_m\}$, one of the following holds:
 - 2.1 $\Omega = \Omega_1^m$. G^{Ω} has the wreathed product action. There is a group H such that H^{Ω_1} is primitive and $S \leq H$.
 - 2.2 $n = |S|^{(a-1)b}$ for some a, b integers with ab = m and a > 1, $b \ge 1$. The stabiliser N_{ω} is a product of "diagonal subgroups".
 - **2.3** same as previous with a = 2, b = m/2, but $G^{\mathcal{F}}$ has two orbits.
 - 2.4 $n = |S|^m$, m > 6, $N_{\omega} = 1$.

All cases except 2.3 have G acting transitively by conjugation on \mathcal{F} .

The algorithm: basic idea

Let G be a finite permutation group on Ω . Due to Cannon and Holt 1997. There are 3 cases, with non-primitive cases reducing to the primitive one:

Intransitive Partition Ω into orbits of G^{Ω} and pull back the socles of the induced groups.

Imprimitive Find minimal block system(s) and pull back the socle(s) of the induced groups; doing more computation if there is only one minimal block system.

Primitive Decide which case of the O'Nan-Scott theorem *G* falls into, using the Classification of Finite Simple Groups, and deduce the socle with this information.

The algorithm: basic idea

Let G be a finite permutation group on Ω . Due to Cannon and Holt 1997. There are 3 cases, with non-primitive cases reducing to the primitive one:

Intransitive Partition Ω into orbits of G^{Ω} and pull back the socles of the induced groups.

Imprimitive Find minimal block system(s) and pull back the socle(s) of the induced groups; doing more computation if there is only one minimal block system.

Primitive Decide which case of the O'Nan-Scott theorem *G* falls into, using the Classification of Finite Simple Groups, and deduce the socle with this information.

Case 1: Abelian socle factor

- ▶ If G has an elementary abelian regular normal subgroup (earns) T, we are in the first case (that is, $S = C_p$ for some prime p) and soc G = T.
- ► Use ERNIE (Neumann 1987) to check for the existence of (and find) the earns.

Recall case 1: $S \cong C_p$ is abelian and N regular $(N_\omega = 1)$, so N is an "earns".

Case 2: Non-abelian socle factor

If there is no earns, soc $G \cong S^m$ with S non-abelian.

Find the final term T in the derived series of G (the soluble residual), i.e.

$$G \triangleright [G, G] = G_1 \triangleright [G_1, G_1] = G_2 \triangleright \ldots \triangleright [G_k, G_k] = T$$

soc G = T except for some situations in case 2.1.

Recall: the derived subgroup [G, G] is the subgroup generated by

$$\{[g,h] | g \in G, h \in H\} = \{g^{-1}h^{-1}gh | g \in G, h \in H\}.$$

Distinguishing $T \neq \operatorname{soc} G$

 $T \neq \text{soc } G$ happens exactly when there is t, m, u, s, n_1 such that $m \geq 5$, $|T| = tus^m$ and $n = n_1^m$ where

- $n_1 = |\Omega_1|$ for some set Ω_1
- s = |S| for some non-abelian simple group S that acts primitively on Ω_1 (this S is the socle factor)
- u is the order of a transitive group K of degree m that is perfect ([K, K] = K)
- $ightharpoonup t ext{ divides } |\operatorname{Aut}(S)/S|^m$

Recall case 2.1: $\Omega = \Omega_1^m$. G^{Ω} has the wreathed product action. There is a group H such that H^{Ω_1} is primitive and $S \leq H$.

Handling $T \neq \operatorname{soc} G$

If we have $T \neq \operatorname{soc} G$, then

- ▶ Take $\omega \in \Omega$, and find a shortest orbit Δ of G_{ω} on $\Omega \setminus \{\omega\}$.
- ▶ Find a block system Σ for G_{ω}^{Δ} such that G_{ω}^{Σ} is primitive.
- ▶ soc G is the normal closure in G of [U, U], where U is the stabiliser $G_{\omega, \Delta \setminus \sigma}$ for any $\sigma \in \Sigma$.

Computing the socle factors

The (non-abelian) socle factors S_1, \ldots, S_m are also of interest. In most cases, they are conjugate, so: find one, find them all.

- ▶ When $T \neq \operatorname{soc} G$, S_1 is the normal closure of [U, U] $(U = G_{\omega, \Delta \setminus \sigma})$ in $\operatorname{soc} G$
- ▶ When $T = \operatorname{soc} G$, either $\operatorname{soc} G$:
 - is imprimitive: examine the kernel K of the action of soc G on a minimal block system. If $n \neq s^{m/2}$, then $S_1 = K$, otherwise pull back from factors of K^{σ} .
 - ▶ has two factors (m = 2): just search for two distinct normal closures.