1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
//! Epoch-based memory management
//!
//! This module provides fast, easy to use memory management for lock free data
//! structures. It's inspired by [Keir Fraser's *epoch-based
//! reclamation*](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf).
//!
//! The basic problem this is solving is the fact that when one thread has
//! removed a node from a data structure, other threads may still have pointers
//! to that node (in the form of snapshots that will be validated through things
//! like compare-and-swap), so the memory cannot be immediately freed. Put differently:
//!
//! 1. There are two sources of reachability at play -- the data structure, and
//! the snapshots in threads accessing it. Before we delete a node, we need to know
//! that it cannot be reached in either of these ways.
//!
//! 2. Once a node has been unliked from the data structure, no *new* snapshots
//! reaching it will be created.
//!
//! Using the epoch scheme is fairly straightforward, and does not require
//! understanding any of the implementation details:
//!
//! - When operating on a shared data structure, a thread must "pin the current
//! epoch", which is done by calling `pin()`. This function returns a `Guard`
//! which unpins the epoch when destroyed.
//!
//! - When the thread subsequently reads from a lock-free data structure, the
//! pointers it extracts act like references with lifetime tied to the
//! `Guard`. This allows threads to safely read from snapshotted data, being
//! guaranteed that the data will remain allocated until they exit the epoch.
//!
//! To put the `Guard` to use, Crossbeam provides a set of three pointer types meant to work together:
//!
//! - `Owned<T>`, akin to `Box<T>`, which points to uniquely-owned data that has
//!   not yet been published in a concurrent data structure.
//!
//! - `Shared<'a, T>`, akin to `&'a T`, which points to shared data that may or may
//!   not be reachable from a data structure, but it guaranteed not to be freed
//!   during lifetime `'a`.
//!
//! - `Atomic<T>`, akin to `std::sync::atomic::AtomicPtr`, which provides atomic
//!   updates to a pointer using the `Owned` and `Shared` types, and connects them
//!   to a `Guard`.
//!
//! Each of these types provides further documentation on usage.
//!
//! # Example
//!
//! ```
//! use std::sync::atomic::Ordering::{Acquire, Release, Relaxed};
//! use std::ptr;
//!
//! use crossbeam::mem::epoch::{self, Atomic, Owned};
//!
//! struct TreiberStack<T> {
//!     head: Atomic<Node<T>>,
//! }
//!
//! struct Node<T> {
//!     data: T,
//!     next: Atomic<Node<T>>,
//! }
//!
//! impl<T> TreiberStack<T> {
//!     fn new() -> TreiberStack<T> {
//!         TreiberStack {
//!             head: Atomic::null()
//!         }
//!     }
//!
//!     fn push(&self, t: T) {
//!         // allocate the node via Owned
//!         let mut n = Owned::new(Node {
//!             data: t,
//!             next: Atomic::null(),
//!         });
//!
//!         // become active
//!         let guard = epoch::pin();
//!
//!         loop {
//!             // snapshot current head
//!             let head = self.head.load(Relaxed, &guard);
//!
//!             // update `next` pointer with snapshot
//!             n.next.store_shared(head, Relaxed);
//!
//!             // if snapshot is still good, link in the new node
//!             match self.head.cas_and_ref(head, n, Release, &guard) {
//!                 Ok(_) => return,
//!                 Err(owned) => n = owned,
//!             }
//!         }
//!     }
//!
//!     fn pop(&self) -> Option<T> {
//!         // become active
//!         let guard = epoch::pin();
//!
//!         loop {
//!             // take a snapshot
//!             match self.head.load(Acquire, &guard) {
//!                 // the stack is non-empty
//!                 Some(head) => {
//!                     // read through the snapshot, *safely*!
//!                     let next = head.next.load(Relaxed, &guard);
//!
//!                     // if snapshot is still good, update from `head` to `next`
//!                     if self.head.cas_shared(Some(head), next, Release) {
//!                         unsafe {
//!                             // mark the node as unlinked
//!                             guard.unlinked(head);
//!
//!                             // extract out the data from the now-unlinked node
//!                             return Some(ptr::read(&(*head).data))
//!                         }
//!                     }
//!                 }
//!
//!                 // we observed the stack empty
//!                 None => return None
//!             }
//!         }
//!     }
//! }
//! ```

// FIXME: document implementation details

use std::marker::PhantomData;
use std::marker;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::ptr;
use std::sync::atomic::{self, Ordering};

mod participant;
mod participants;
mod global;
mod local;
mod garbage;

/// Like `Box<T>`: an owned, heap-allocated data value of type `T`.
pub struct Owned<T> {
    data: Box<T>,
}

impl<T> Owned<T> {
    /// Move `t` to a new heap allocation.
    pub fn new(t: T) -> Owned<T> {
        Owned { data: Box::new(t) }
    }

    fn as_raw(&self) -> *mut T {
        self.deref() as *const _ as *mut _
    }
}

impl<T> Deref for Owned<T> {
    type Target = T;
    fn deref(&self) -> &T {
        &self.data
    }
}

impl<T> DerefMut for Owned<T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut self.data
    }
}

#[derive(PartialEq, Eq)]
/// Like `&'a T`: a shared reference valid for lifetime `'a`.
pub struct Shared<'a, T: 'a> {
    data: &'a T,
}

impl<'a, T> Copy for Shared<'a, T> {}
impl<'a, T> Clone for Shared<'a, T> {
    fn clone(&self) -> Shared<'a, T> {
        Shared { data: self.data }
    }
}

impl<'a, T> Deref for Shared<'a, T> {
    type Target = &'a T;
    fn deref(&self) -> &&'a T {
        &self.data
    }
}

impl<'a, T> Shared<'a, T> {
    unsafe fn from_raw(raw: *mut T) -> Option<Shared<'a, T>> {
        if raw == ptr::null_mut() { None }
        else {
            Some(Shared {
                data: mem::transmute::<*mut T, &T>(raw)
            })
        }
    }

    unsafe fn from_ref(r: &T) -> Shared<'a, T> {
        Shared { data: mem::transmute(r) }
    }

    unsafe fn from_owned(owned: Owned<T>) -> Shared<'a, T> {
        let ret = Shared::from_ref(owned.deref());
        mem::forget(owned);
        ret
    }

    fn as_raw(&self) -> *mut T {
        self.data as *const _ as *mut _
    }
}

/// Like `std::sync::atomic::AtomicPtr`.
///
/// Provides atomic access to a (nullable) pointer of type `T`, interfacing with
/// the `Owned` and `Shared` types.
pub struct Atomic<T> {
    ptr: atomic::AtomicPtr<T>,
    _marker: PhantomData<*const ()>,
}

unsafe impl<T: Sync> Send for Atomic<T> {}
unsafe impl<T: Sync> Sync for Atomic<T> {}

fn opt_shared_into_raw<T>(val: Option<Shared<T>>) -> *mut T {
    val.map(|p| p.as_raw()).unwrap_or(ptr::null_mut())
}

fn opt_owned_as_raw<T>(val: &Option<Owned<T>>) -> *mut T {
    val.as_ref().map(Owned::as_raw).unwrap_or(ptr::null_mut())
}

fn opt_owned_into_raw<T>(val: Option<Owned<T>>) -> *mut T {
    let ptr = val.as_ref().map(Owned::as_raw).unwrap_or(ptr::null_mut());
    mem::forget(val);
    ptr
}

impl<T> Atomic<T> {
    /// Create a new, null atomic pointer.
    #[cfg(not(feature = "nightly"))]
    pub fn null() -> Atomic<T> {
        Atomic {
            ptr: atomic::AtomicPtr::new(0 as *mut _),
            _marker: PhantomData
        }
    }

    /// Create a new, null atomic pointer.
    #[cfg(feature = "nightly")]
    pub const fn null() -> Atomic<T> {
        Atomic {
            ptr: atomic::AtomicPtr::new(0 as *mut _),
            _marker: PhantomData
        }
    }

    /// Do an atomic load with the given memory ordering.
    ///
    /// In order to perform the load, we must pass in a borrow of a
    /// `Guard`. This is a way of guaranteeing that the thread has pinned the
    /// epoch for the entire lifetime `'a`. In return, you get an optional
    /// `Shared` pointer back (`None` if the `Atomic` is currently null), with
    /// lifetime tied to the guard.
    ///
    /// # Panics
    ///
    /// Panics if `ord` is `Release` or `AcqRel`.
    pub fn load<'a>(&self, ord: Ordering, _: &'a Guard) -> Option<Shared<'a, T>> {
        unsafe { Shared::from_raw(self.ptr.load(ord)) }
    }

    /// Do an atomic store with the given memory ordering.
    ///
    /// Transfers ownership of the given `Owned` pointer, if any. Since no
    /// lifetime information is acquired, no `Guard` value is needed.
    ///
    /// # Panics
    ///
    /// Panics if `ord` is `Acquire` or `AcqRel`.
    pub fn store(&self, val: Option<Owned<T>>, ord: Ordering) {
        self.ptr.store(opt_owned_into_raw(val), ord)
    }

    /// Do an atomic store with the given memory ordering, immediately yielding
    /// a shared reference to the pointer that was stored.
    ///
    /// Transfers ownership of the given `Owned` pointer, yielding a `Shared`
    /// reference to it. Since the reference is valid only for the curent epoch,
    /// it's lifetime is tied to a `Guard` value.
    ///
    /// # Panics
    ///
    /// Panics if `ord` is `Acquire` or `AcqRel`.
    pub fn store_and_ref<'a>(&self, val: Owned<T>, ord: Ordering, _: &'a Guard)
                             -> Shared<'a, T>
    {
        unsafe {
            let shared = Shared::from_owned(val);
            self.store_shared(Some(shared), ord);
            shared
        }
    }

    /// Do an atomic store of a `Shared` pointer with the given memory ordering.
    ///
    /// This operation does not require a guard, because it does not yield any
    /// new information about the lifetime of a pointer.
    ///
    /// # Panics
    ///
    /// Panics if `ord` is `Acquire` or `AcqRel`.
    pub fn store_shared(&self, val: Option<Shared<T>>, ord: Ordering) {
        self.ptr.store(opt_shared_into_raw(val), ord)
    }

    /// Do a compare-and-set from a `Shared` to an `Owned` pointer with the
    /// given memory ordering.
    ///
    /// As with `store`, this operation does not require a guard; it produces no new
    /// lifetime information. The `Result` indicates whether the CAS succeeded; if
    /// not, ownership of the `new` pointer is returned to the caller.
    pub fn cas(&self, old: Option<Shared<T>>, new: Option<Owned<T>>, ord: Ordering)
               -> Result<(), Option<Owned<T>>>
    {
        if self.ptr.compare_and_swap(opt_shared_into_raw(old),
                                     opt_owned_as_raw(&new),
                                     ord) == opt_shared_into_raw(old)
        {
            mem::forget(new);
            Ok(())
        } else {
            Err(new)
        }
    }

    /// Do a compare-and-set from a `Shared` to an `Owned` pointer with the
    /// given memory ordering, immediatley acquiring a new `Shared` reference to
    /// the previously-owned pointer if successful.
    ///
    /// This operation is analogous to `store_and_ref`.
    pub fn cas_and_ref<'a>(&self, old: Option<Shared<T>>, new: Owned<T>,
                           ord: Ordering, _: &'a Guard)
                           -> Result<Shared<'a, T>, Owned<T>>
    {
        if self.ptr.compare_and_swap(opt_shared_into_raw(old), new.as_raw(), ord)
            == opt_shared_into_raw(old)
        {
            Ok(unsafe { Shared::from_owned(new) })
        } else {
            Err(new)
        }
    }

    /// Do a compare-and-set from a `Shared` to another `Shared` pointer with
    /// the given memory ordering.
    ///
    /// The boolean return value is `true` when the CAS is successful.
    pub fn cas_shared(&self, old: Option<Shared<T>>, new: Option<Shared<T>>, ord: Ordering)
                      -> bool
    {
        self.ptr.compare_and_swap(opt_shared_into_raw(old),
                                  opt_shared_into_raw(new),
                                  ord) == opt_shared_into_raw(old)
    }

    /// Do an atomic swap with an `Owned` pointer with the given memory ordering.
    pub fn swap<'a>(&self, new: Option<Owned<T>>, ord: Ordering, _: &'a Guard)
                    -> Option<Shared<'a, T>> {
        unsafe { Shared::from_raw(self.ptr.swap(opt_owned_into_raw(new), ord)) }
    }

    /// Do an atomic swap with a `Shared` pointer with the given memory ordering.
    pub fn swap_shared<'a>(&self, new: Option<Shared<T>>, ord: Ordering, _: &'a Guard)
                           -> Option<Shared<'a, T>> {
        unsafe { Shared::from_raw(self.ptr.swap(opt_shared_into_raw(new), ord)) }
    }
}

/// An RAII-style guard for pinning the current epoch.
///
/// A guard must be acquired before most operations on an `Atomic` pointer. On
/// destruction, it unpins the epoch.
#[must_use]
pub struct Guard {
    _marker: marker::PhantomData<*mut ()>, // !Send and !Sync
}

static GC_THRESH: usize = 32;

/// Pin the current epoch.
///
/// Threads generally pin before interacting with a lock-free data
/// structure. Pinning requires a full memory barrier, so is somewhat
/// expensive. It is rentrant -- you can safely acquire nested guards, and only
/// the first guard requires a barrier. Thus, in cases where you expect to
/// perform several lock-free operations in quick succession, you may consider
/// pinning around the entire set of operations.
pub fn pin() -> Guard {
    local::with_participant(|p| {
        p.enter();

        let g = Guard {
            _marker: marker::PhantomData,
        };

        if p.garbage_size() > GC_THRESH {
            p.try_collect(&g);
        }

        g
    })
}

impl Guard {
    /// Assert that the value is no longer reachable from a lock-free data
    /// structure and should be collected when sufficient epochs have passed.
    pub unsafe fn unlinked<T>(&self, val: Shared<T>) {
        local::with_participant(|p| p.reclaim(val.as_raw()))
    }

    /// Move the thread-local garbage into the global set of garbage.
    pub fn migrate_garbage(&self) {
        local::with_participant(|p| p.migrate_garbage())
    }
}

impl Drop for Guard {
    fn drop(&mut self) {
        local::with_participant(|p| p.exit());
    }
}

#[cfg(test)]
mod test {
    use std::sync::atomic::Ordering;
    use super::*;

    #[test]
    fn smoke_guard() {
        let g = pin();
    }

    #[test]
    fn test_no_drop() {
        static mut DROPS: i32 = 0;
        struct Test;
        impl Drop for Test {
            fn drop(&mut self) {
                unsafe {
                    DROPS += 1;
                }
            }
        }
        let g = pin();

        let x = Atomic::null();
        x.store(Some(Owned::new(Test)), Ordering::Relaxed);
        x.store_and_ref(Owned::new(Test), Ordering::Relaxed, &g);
        let y = x.load(Ordering::Relaxed, &g);
        let z = x.cas_and_ref(y, Owned::new(Test), Ordering::Relaxed, &g).ok();
        x.cas(z, Some(Owned::new(Test)), Ordering::Relaxed);
        x.swap(Some(Owned::new(Test)), Ordering::Relaxed, &g);

        unsafe {
            assert_eq!(DROPS, 0);
        }
    }
}