1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
//! Epoch-based memory management //! //! This module provides fast, easy to use memory management for lock free data //! structures. It's inspired by [Keir Fraser's *epoch-based //! reclamation*](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf). //! //! The basic problem this is solving is the fact that when one thread has //! removed a node from a data structure, other threads may still have pointers //! to that node (in the form of snapshots that will be validated through things //! like compare-and-swap), so the memory cannot be immediately freed. Put differently: //! //! 1. There are two sources of reachability at play -- the data structure, and //! the snapshots in threads accessing it. Before we delete a node, we need to know //! that it cannot be reached in either of these ways. //! //! 2. Once a node has been unliked from the data structure, no *new* snapshots //! reaching it will be created. //! //! Using the epoch scheme is fairly straightforward, and does not require //! understanding any of the implementation details: //! //! - When operating on a shared data structure, a thread must "pin the current //! epoch", which is done by calling `pin()`. This function returns a `Guard` //! which unpins the epoch when destroyed. //! //! - When the thread subsequently reads from a lock-free data structure, the //! pointers it extracts act like references with lifetime tied to the //! `Guard`. This allows threads to safely read from snapshotted data, being //! guaranteed that the data will remain allocated until they exit the epoch. //! //! To put the `Guard` to use, Crossbeam provides a set of three pointer types meant to work together: //! //! - `Owned<T>`, akin to `Box<T>`, which points to uniquely-owned data that has //! not yet been published in a concurrent data structure. //! //! - `Shared<'a, T>`, akin to `&'a T`, which points to shared data that may or may //! not be reachable from a data structure, but it guaranteed not to be freed //! during lifetime `'a`. //! //! - `Atomic<T>`, akin to `std::sync::atomic::AtomicPtr`, which provides atomic //! updates to a pointer using the `Owned` and `Shared` types, and connects them //! to a `Guard`. //! //! Each of these types provides further documentation on usage. //! //! # Example //! //! ``` //! use std::sync::atomic::Ordering::{Acquire, Release, Relaxed}; //! use std::ptr; //! //! use crossbeam::mem::epoch::{self, Atomic, Owned}; //! //! struct TreiberStack<T> { //! head: Atomic<Node<T>>, //! } //! //! struct Node<T> { //! data: T, //! next: Atomic<Node<T>>, //! } //! //! impl<T> TreiberStack<T> { //! fn new() -> TreiberStack<T> { //! TreiberStack { //! head: Atomic::null() //! } //! } //! //! fn push(&self, t: T) { //! // allocate the node via Owned //! let mut n = Owned::new(Node { //! data: t, //! next: Atomic::null(), //! }); //! //! // become active //! let guard = epoch::pin(); //! //! loop { //! // snapshot current head //! let head = self.head.load(Relaxed, &guard); //! //! // update `next` pointer with snapshot //! n.next.store_shared(head, Relaxed); //! //! // if snapshot is still good, link in the new node //! match self.head.cas_and_ref(head, n, Release, &guard) { //! Ok(_) => return, //! Err(owned) => n = owned, //! } //! } //! } //! //! fn pop(&self) -> Option<T> { //! // become active //! let guard = epoch::pin(); //! //! loop { //! // take a snapshot //! match self.head.load(Acquire, &guard) { //! // the stack is non-empty //! Some(head) => { //! // read through the snapshot, *safely*! //! let next = head.next.load(Relaxed, &guard); //! //! // if snapshot is still good, update from `head` to `next` //! if self.head.cas_shared(Some(head), next, Release) { //! unsafe { //! // mark the node as unlinked //! guard.unlinked(head); //! //! // extract out the data from the now-unlinked node //! return Some(ptr::read(&(*head).data)) //! } //! } //! } //! //! // we observed the stack empty //! None => return None //! } //! } //! } //! } //! ``` // FIXME: document implementation details use std::marker::PhantomData; use std::marker; use std::mem; use std::ops::{Deref, DerefMut}; use std::ptr; use std::sync::atomic::{self, Ordering}; mod participant; mod participants; mod global; mod local; mod garbage; /// Like `Box<T>`: an owned, heap-allocated data value of type `T`. pub struct Owned<T> { data: Box<T>, } impl<T> Owned<T> { /// Move `t` to a new heap allocation. pub fn new(t: T) -> Owned<T> { Owned { data: Box::new(t) } } fn as_raw(&self) -> *mut T { self.deref() as *const _ as *mut _ } } impl<T> Deref for Owned<T> { type Target = T; fn deref(&self) -> &T { &self.data } } impl<T> DerefMut for Owned<T> { fn deref_mut(&mut self) -> &mut T { &mut self.data } } #[derive(PartialEq, Eq)] /// Like `&'a T`: a shared reference valid for lifetime `'a`. pub struct Shared<'a, T: 'a> { data: &'a T, } impl<'a, T> Copy for Shared<'a, T> {} impl<'a, T> Clone for Shared<'a, T> { fn clone(&self) -> Shared<'a, T> { Shared { data: self.data } } } impl<'a, T> Deref for Shared<'a, T> { type Target = &'a T; fn deref(&self) -> &&'a T { &self.data } } impl<'a, T> Shared<'a, T> { unsafe fn from_raw(raw: *mut T) -> Option<Shared<'a, T>> { if raw == ptr::null_mut() { None } else { Some(Shared { data: mem::transmute::<*mut T, &T>(raw) }) } } unsafe fn from_ref(r: &T) -> Shared<'a, T> { Shared { data: mem::transmute(r) } } unsafe fn from_owned(owned: Owned<T>) -> Shared<'a, T> { let ret = Shared::from_ref(owned.deref()); mem::forget(owned); ret } fn as_raw(&self) -> *mut T { self.data as *const _ as *mut _ } } /// Like `std::sync::atomic::AtomicPtr`. /// /// Provides atomic access to a (nullable) pointer of type `T`, interfacing with /// the `Owned` and `Shared` types. pub struct Atomic<T> { ptr: atomic::AtomicPtr<T>, _marker: PhantomData<*const ()>, } unsafe impl<T: Sync> Send for Atomic<T> {} unsafe impl<T: Sync> Sync for Atomic<T> {} fn opt_shared_into_raw<T>(val: Option<Shared<T>>) -> *mut T { val.map(|p| p.as_raw()).unwrap_or(ptr::null_mut()) } fn opt_owned_as_raw<T>(val: &Option<Owned<T>>) -> *mut T { val.as_ref().map(Owned::as_raw).unwrap_or(ptr::null_mut()) } fn opt_owned_into_raw<T>(val: Option<Owned<T>>) -> *mut T { let ptr = val.as_ref().map(Owned::as_raw).unwrap_or(ptr::null_mut()); mem::forget(val); ptr } impl<T> Atomic<T> { /// Create a new, null atomic pointer. #[cfg(not(feature = "nightly"))] pub fn null() -> Atomic<T> { Atomic { ptr: atomic::AtomicPtr::new(0 as *mut _), _marker: PhantomData } } /// Create a new, null atomic pointer. #[cfg(feature = "nightly")] pub const fn null() -> Atomic<T> { Atomic { ptr: atomic::AtomicPtr::new(0 as *mut _), _marker: PhantomData } } /// Do an atomic load with the given memory ordering. /// /// In order to perform the load, we must pass in a borrow of a /// `Guard`. This is a way of guaranteeing that the thread has pinned the /// epoch for the entire lifetime `'a`. In return, you get an optional /// `Shared` pointer back (`None` if the `Atomic` is currently null), with /// lifetime tied to the guard. /// /// # Panics /// /// Panics if `ord` is `Release` or `AcqRel`. pub fn load<'a>(&self, ord: Ordering, _: &'a Guard) -> Option<Shared<'a, T>> { unsafe { Shared::from_raw(self.ptr.load(ord)) } } /// Do an atomic store with the given memory ordering. /// /// Transfers ownership of the given `Owned` pointer, if any. Since no /// lifetime information is acquired, no `Guard` value is needed. /// /// # Panics /// /// Panics if `ord` is `Acquire` or `AcqRel`. pub fn store(&self, val: Option<Owned<T>>, ord: Ordering) { self.ptr.store(opt_owned_into_raw(val), ord) } /// Do an atomic store with the given memory ordering, immediately yielding /// a shared reference to the pointer that was stored. /// /// Transfers ownership of the given `Owned` pointer, yielding a `Shared` /// reference to it. Since the reference is valid only for the curent epoch, /// it's lifetime is tied to a `Guard` value. /// /// # Panics /// /// Panics if `ord` is `Acquire` or `AcqRel`. pub fn store_and_ref<'a>(&self, val: Owned<T>, ord: Ordering, _: &'a Guard) -> Shared<'a, T> { unsafe { let shared = Shared::from_owned(val); self.store_shared(Some(shared), ord); shared } } /// Do an atomic store of a `Shared` pointer with the given memory ordering. /// /// This operation does not require a guard, because it does not yield any /// new information about the lifetime of a pointer. /// /// # Panics /// /// Panics if `ord` is `Acquire` or `AcqRel`. pub fn store_shared(&self, val: Option<Shared<T>>, ord: Ordering) { self.ptr.store(opt_shared_into_raw(val), ord) } /// Do a compare-and-set from a `Shared` to an `Owned` pointer with the /// given memory ordering. /// /// As with `store`, this operation does not require a guard; it produces no new /// lifetime information. The `Result` indicates whether the CAS succeeded; if /// not, ownership of the `new` pointer is returned to the caller. pub fn cas(&self, old: Option<Shared<T>>, new: Option<Owned<T>>, ord: Ordering) -> Result<(), Option<Owned<T>>> { if self.ptr.compare_and_swap(opt_shared_into_raw(old), opt_owned_as_raw(&new), ord) == opt_shared_into_raw(old) { mem::forget(new); Ok(()) } else { Err(new) } } /// Do a compare-and-set from a `Shared` to an `Owned` pointer with the /// given memory ordering, immediatley acquiring a new `Shared` reference to /// the previously-owned pointer if successful. /// /// This operation is analogous to `store_and_ref`. pub fn cas_and_ref<'a>(&self, old: Option<Shared<T>>, new: Owned<T>, ord: Ordering, _: &'a Guard) -> Result<Shared<'a, T>, Owned<T>> { if self.ptr.compare_and_swap(opt_shared_into_raw(old), new.as_raw(), ord) == opt_shared_into_raw(old) { Ok(unsafe { Shared::from_owned(new) }) } else { Err(new) } } /// Do a compare-and-set from a `Shared` to another `Shared` pointer with /// the given memory ordering. /// /// The boolean return value is `true` when the CAS is successful. pub fn cas_shared(&self, old: Option<Shared<T>>, new: Option<Shared<T>>, ord: Ordering) -> bool { self.ptr.compare_and_swap(opt_shared_into_raw(old), opt_shared_into_raw(new), ord) == opt_shared_into_raw(old) } /// Do an atomic swap with an `Owned` pointer with the given memory ordering. pub fn swap<'a>(&self, new: Option<Owned<T>>, ord: Ordering, _: &'a Guard) -> Option<Shared<'a, T>> { unsafe { Shared::from_raw(self.ptr.swap(opt_owned_into_raw(new), ord)) } } /// Do an atomic swap with a `Shared` pointer with the given memory ordering. pub fn swap_shared<'a>(&self, new: Option<Shared<T>>, ord: Ordering, _: &'a Guard) -> Option<Shared<'a, T>> { unsafe { Shared::from_raw(self.ptr.swap(opt_shared_into_raw(new), ord)) } } } /// An RAII-style guard for pinning the current epoch. /// /// A guard must be acquired before most operations on an `Atomic` pointer. On /// destruction, it unpins the epoch. #[must_use] pub struct Guard { _marker: marker::PhantomData<*mut ()>, // !Send and !Sync } static GC_THRESH: usize = 32; /// Pin the current epoch. /// /// Threads generally pin before interacting with a lock-free data /// structure. Pinning requires a full memory barrier, so is somewhat /// expensive. It is rentrant -- you can safely acquire nested guards, and only /// the first guard requires a barrier. Thus, in cases where you expect to /// perform several lock-free operations in quick succession, you may consider /// pinning around the entire set of operations. pub fn pin() -> Guard { local::with_participant(|p| { p.enter(); let g = Guard { _marker: marker::PhantomData, }; if p.garbage_size() > GC_THRESH { p.try_collect(&g); } g }) } impl Guard { /// Assert that the value is no longer reachable from a lock-free data /// structure and should be collected when sufficient epochs have passed. pub unsafe fn unlinked<T>(&self, val: Shared<T>) { local::with_participant(|p| p.reclaim(val.as_raw())) } /// Move the thread-local garbage into the global set of garbage. pub fn migrate_garbage(&self) { local::with_participant(|p| p.migrate_garbage()) } } impl Drop for Guard { fn drop(&mut self) { local::with_participant(|p| p.exit()); } } #[cfg(test)] mod test { use std::sync::atomic::Ordering; use super::*; #[test] fn smoke_guard() { let g = pin(); } #[test] fn test_no_drop() { static mut DROPS: i32 = 0; struct Test; impl Drop for Test { fn drop(&mut self) { unsafe { DROPS += 1; } } } let g = pin(); let x = Atomic::null(); x.store(Some(Owned::new(Test)), Ordering::Relaxed); x.store_and_ref(Owned::new(Test), Ordering::Relaxed, &g); let y = x.load(Ordering::Relaxed, &g); let z = x.cas_and_ref(y, Owned::new(Test), Ordering::Relaxed, &g).ok(); x.cas(z, Some(Owned::new(Test)), Ordering::Relaxed); x.swap(Some(Owned::new(Test)), Ordering::Relaxed, &g); unsafe { assert_eq!(DROPS, 0); } } }