1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! Strided slices.
//!
//! This library provides two types `Stride` and `MutStride` as
//! generalised forms of `&[T]` and `&mut [T]` respectively, where the
//! elements are regularly spaced in memory, but not necessarily
//! immediately adjacently.
//!
//! For example, given an underlying array `[1, 2, 3, 4, 5]`, the
//! elements `[1, 3, 5]` are a strided slice with stride 2, and
//! `[1, 4]` has stride 3. Any slice can be regarded as a strided slice
//! with stride 1.
//!
//! This provides functionality through which one can safely and
//! efficiently manipulate every `n`th element of a slice (even a
//! mutable one) as close as possible to it being a conventional
//! slice. This releases one from worries about stride bookkeeping,
//! aliasing of `&mut` or any `unsafe` code.
//!
//! # Quick start
//!
//! The work-horse functions are `.substrides(n)` and
//! `.substrides_mut(n)`, which return an iterator across a series of
//! `n` new strided slices (shared and mutable, respectively), each of
//! which points to every `n`th element, and each of which starts at
//! the next successive offset. For example, the following has
//! `n = 3`.
//!
//! ```rust
//! use strided::MutStride;
//!
//! let mut v = [1u8, 2, 3, 4, 5];
//! let mut all = MutStride::new(&mut v);
//!
//! let mut substrides = all.substrides_mut(3);
//!
//! let a = substrides.next().unwrap();
//! let b = substrides.next().unwrap();
//! let c = substrides.next().unwrap();
//! assert!(substrides.next().is_none()); // there was exactly 3.
//!
//! assert_eq!(a, MutStride::new(&mut [1, 4]));
//! assert_eq!(b, MutStride::new(&mut [2, 5]));
//! assert_eq!(c, MutStride::new(&mut [3]));
//! ```
//!
//! The common case of `n = 2` has an abbreviation `substrides2`
//! (resp. `substrides2_mut`), which takes the liberty of returns a
//! tuple rather than an iterator to make direct destructuring
//! work. Continuing with the values above, `left` and `right` point
//! to alternate elements, starting at index `0` and `1` of their
//! parent slice respectively.
//!
//! ```rust
//! # use strided::MutStride;
//! # let mut v = [1u8, 2, 3, 4, 5];
//! # let mut all = MutStride::new(&mut v);
//! let (left, right) = all.substrides2_mut();
//!
//! assert_eq!(left, MutStride::new(&mut [1, 3, 5]));
//! assert_eq!(right, MutStride::new(&mut [2, 4]));
//! ```
//!
//! A lot of the conventional slice functionality is available, such
//! as indexing, iterators and slicing.
//!
//! ```rust
//! # use strided::MutStride;
//! # let mut v = [1u8, 2, 3, 4, 5];
//! # let mut all = MutStride::new(&mut v);
//! let (mut left, right) = all.substrides2_mut();
//! assert_eq!(left[2], 5);
//! assert!(right.get(10).is_none()); // out of bounds
//!
//! left[2] += 10;
//! match left.get_mut(0) {
//!     Some(val) => *val -= 1,
//!     None => {}
//! }
//!
//! assert_eq!(right.iter().fold(0, |sum, a| sum + *a), 2 + 4);
//! for val in left.iter_mut() {
//!     *val /= 2
//! }
//! ```
//!
//! ## Ownership and `reborrow`
//!
//! `MutStride` has a method `reborrow` which has signature
//!
//! ```rust,ignore
//! impl<'a, T> MutStride<'a, T> {
//!     pub fn reborrow<'b>(&'b mut self) -> MutStride<'b, T> { ... }
//! }
//! ```
//!
//! That is, it allows temporarily viewing a strided slices as one
//! with a shorter lifetime. This method is key because many of the
//! methods on `MutStride` take `self` by-value and so consume
//! ownership... which is rather unfortunate if one wants to use a
//! strided slice multiple times.
//!
//! The temporary returned by `reborrow` can be used with the
//! consuming methods, which allows the parent slice to continuing
//! being used after that temporary has disappeared. For example, all
//! of the splitting and slicing methods on `MutStride` consume
//! ownership, and so `reborrow` is necessary there to continue using,
//! in this case, `left`.
//!
//! ```rust
//! # use strided::MutStride;
//! # let mut v = [1u8, 2, 3, 4, 5];
//! # let mut all = MutStride::new(&mut v);
//! let (mut left, right) = all.substrides2_mut();
//! assert_eq!(left.reborrow().slice_mut(1, 3), MutStride::new(&mut [3, 5]));
//! assert_eq!(left.reborrow().slice_from_mut(2), MutStride::new(&mut [5]));
//! assert_eq!(left.reborrow().slice_to_mut(2), MutStride::new(&mut [1, 3]));
//!
//! // no reborrow:
//! assert_eq!(right.split_at_mut(1),
//!            (MutStride::new(&mut [2]), MutStride::new(&mut [4])));
//! // println!("{}", right); // error: use of moved value `right`.
//! ```
//!
//! These contortions are necessary to ensure that `&mut`s cannot
//! alias, while still maintaining flexibility: leaving elements with
//! the maximum possible lifetime (i.e. that of the non-strided slices
//! which they lie in). Theoretically they are necessary with
//! `&mut []` too, but the compiler inserts implicit reborrows and so
//! one rarely needs to do them manually.
//!
//! In practice, one should only need to insert `reborrow`s if the
//! compiler complains about the use of a moved value.
//!
//! The shared `Stride` is equivalent to `&[]` and only handles `&`
//! references, making ownership transfer and `reborrow` unnecessary,
//! so all its methods act identically to those on `&[]`.
//!
//! # Example
//!
//! The [fast Fourier transform
//! (FFT)](https://en.wikipedia.org/wiki/Fast_Fourier_transform) is a
//! signal processing algorithm that performs a discrete Fourier
//! transform (DFT) of length `n` in `O(n log n)` time. A DFT breaks a
//! waveform into the sum of sines and cosines, and is an important
//! part of many other algorithms due to certain nice properties of
//! the Fourier transform.
//!
//! The first FFT algorithm was the [Cooley-Tukey
//! algorithm](https://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm). The
//! decimation-in-time variant works by computing the FFT of
//! equal-length subarrays of equally spaced elements and then
//! combining these together into the desired result. This sort of
//! spacing is exactly the striding provided by this library, and
//! hence this library can be used to create an FFT algorithm in a
//! very natural way.
//!
//! Below is an implementation of the radix-2 case, that is, when the
//! length `n` is a power of two. In this case, only two strided
//! subarrays are necessary: exactly the alternating ones provided by
//! `substrides2`. Note the use of `reborrow` to allow `start` and
//! `end` to be used for the recursive `fft` calls and then again
//! later in the loop.
//!
//! ```rust
//! # #![allow(unstable)]
//! extern crate strided;
//! extern crate num; // https://github.com/rust-lang/num
//! use std::f64;
//! use num::complex::{Complex, Complex64};
//! use strided::{MutStride, Stride};
//!
//! /// Writes the forward DFT of `input` to `output`.
//! fn fft(input: Stride<Complex64>, mut output: MutStride<Complex64>) {
//!     // check it's a power of two.
//!     assert!(input.len() == output.len() && input.len().count_ones() == 1);
//!
//!     // base case: the DFT of a single element is itself.
//!     if input.len() == 1 {
//!         output[0] = input[0];
//!         return
//!     }
//!
//!     // split the input into two arrays of alternating elements ("decimate in time")
//!     let (evens, odds) = input.substrides2();
//!     // break the output into two halves (front and back, not alternating)
//!     let (mut start, mut end) = output.split_at_mut(input.len() / 2);
//!
//!     // recursively perform two FFTs on alternating elements of the input, writing the
//!     // results into the first and second half of the output array respectively.
//!     fft(evens, start.reborrow());
//!     fft(odds, end.reborrow());
//!
//!     // exp(-2πi/N)
//!     let twiddle = Complex::from_polar(&1.0, &(-2.0 * f64::consts::PI / input.len() as f64));
//!
//!     let mut factor = Complex::new(1., 0.);
//!
//!     // combine the subFFTs with the relations:
//!     //   X_k       = E_k + exp(-2πki/N) * O_k
//!     //   X_{k+N/2} = E_k - exp(-2πki/N) * O_k
//!     for (even, odd) in start.iter_mut().zip(end.iter_mut()) {
//!         let twiddled = factor * *odd;
//!         let e = *even;
//!
//!         *even = e + twiddled;
//!         *odd = e - twiddled;
//!         factor = factor * twiddle;
//!     }
//! }
//!
//! fn main() {
//!     let a = [Complex::new(2., 0.), Complex::new(1., 0.),
//!              Complex::new(2., 0.), Complex::new(1., 0.)];
//!     let mut b = [Complex::new(0., 0.); 4];
//!
//!     fft(Stride::new(&a), MutStride::new(&mut b));
//!     println!("forward: {:?} -> {:?}", &a, &b);
//! }
//! ```
//!
//! The above definitely has complexity `O(n log n)`, but it has a
//! much larger constant factor than an optimised library like
//! [FFTW](http://www.fftw.org/). (Strictly speaking `output` does not
//! need to be a strided slice, since it is never split into
//! alternating elements.)

//#![feature(core)]
#![cfg_attr(all(test, feature = "unstable"), feature(test))]

#[cfg(all(test, feature = "unstable"))] extern crate test;

pub use base::{Items, MutItems};

pub use mut_::Stride as MutStride;
pub use mut_::Substrides as MutSubstrides;

pub use imm::Stride as Stride;
pub use imm::Substrides as Substrides;


pub use traits::{Strided, MutStrided};

#[cfg(test)]
mod common_tests;

mod base;
mod mut_;
mod imm;
mod traits;

#[cfg(all(test, feature = "unstable"))]
mod bench {
    use super::Stride;
    use test::Bencher as B;
    use test;

    const N: usize = 100;

    #[bench]
    fn iter_slice(b: &mut B) {
        let v = (0..N).collect::<Vec<_>>();
        b.iter(|| {
            test::black_box(&v);
            for e in v.iter() { test::black_box(e); }
        })
    }

    #[bench]
    fn iter_step_1(b: &mut B) {
        let v = (0..N).collect::<Vec<_>>();
        let s = Stride::new(&*v);
        b.iter(|| {
            test::black_box(&s);
            for e in s.iter() { test::black_box(e); }
        })
    }

    #[bench]
    fn iter_step_13(b: &mut B) {
        let v = (0..13 * N).collect::<Vec<_>>();
        let s = Stride::new(&*v);
        let s = s.substrides(13).next().unwrap();
        b.iter(|| {
            test::black_box(&s);
            for e in s.iter() { test::black_box(e); }
        })
    }
}