1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use std::fmt::{self, Debug};
use std::mem;
use std::ops::Index;
use base;
use base::Stride as Base;

/// A shared strided slice. This is equivalent to a `&[T]` that only
/// refers to every `n`th `T`.
#[repr(C)]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
pub struct Stride<'a,T: 'a> {
    base: Base<'a, T>,
}
impl<'a, T> Copy for Stride<'a, T> {}
impl<'a, T> Clone for Stride<'a, T> {
    fn clone(&self) -> Stride<'a, T> { *self }
}

unsafe impl<'a, T: Sync> Sync for Stride<'a, T> {}
unsafe impl<'a, T: Sync> Send for Stride<'a, T> {}

impl<'a, T: Debug> Debug for Stride<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.base.fmt(f)
    }
}

impl<'a, T> Stride<'a, T> {
    #[inline(always)]
    fn new_raw(base: Base<'a, T>) -> Stride<'a, T> {
        Stride {
            base: base,
        }
    }

    /// Creates a new strided slice directly from a conventional
    /// slice. The return value has stride 1.
    #[inline(always)]
    pub fn new(x: &'a [T]) -> Stride<'a, T> {
        Stride::new_raw(Base::new(x.as_ptr() as *mut _, x.len(), 1))
    }

    /// Returns the number of elements accessible in `self`.
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.base.len()
    }
    /// Returns the offset between successive elements of `self` as a
    /// count of *elements*, not bytes.
    #[inline(always)]
    pub fn stride(&self) -> usize {
        self.base.stride() / mem::size_of::<T>()
    }
    /// Returns a pointer to the first element of this strided slice.
    ///
    /// NB. one must be careful since only every `self.stride()`th
    /// element is guaranteed to have unique access via this object;
    /// the others may be under the control of some other strided
    /// slice.
    #[inline(always)]
    pub fn as_ptr(&self) -> *const T {
        self.base.as_mut_ptr() as *const T
    }

    /// Creates a temporary copy of this strided slice.
    ///
    /// This is an explicit form of the reborrowing the compiler does
    /// implicitly for conventional `&mut` pointers. This is designed
    /// to allow the by-value `self` methods to be used without losing
    /// access to the slice. (This exists for consistency with
    /// `MutStride`, since this shared form is `Copy` and so
    /// reborrowing is unnecessary.)
    #[inline(always)]
    #[cfg(test)]
    fn reborrow<'b>(&'b self) -> Stride<'b, T> {
        // only exists to work with tests.
        *self
    }


    /// Breaks this strided slice into two strided slices pointing to
    /// alternate elements.
    ///
    /// That is, it doubles the stride and (approximately) halves the
    /// length. A slice pointing to values `[1, 2, 3, 4, 5]` becomes
    /// two slices `[1, 3, 5]` and `[2, 4]`. This is guaranteed to
    /// succeed even if `self.len()` is odd, and even if `self`
    /// has only zero or one elements.
    #[inline]
    pub fn substrides2(&self) -> (Stride<'a, T>, Stride<'a, T>) {
        let (l, r) = self.base.substrides2();
        (Stride::new_raw(l), Stride::new_raw(r))
    }

    /// Returns an iterator over `n` strided subslices of `self` each
    /// pointing to every `n`th element, starting at successive
    /// offsets.
    ///
    /// Calling `substrides(3)` on a slice pointing to `[1, 2, 3, 4, 5, 6,
    /// 7]` will yield, in turn, `[1, 4, 7]`, `[2, 5]` and finally
    /// `[3, 6]`. Like with `split2` this is guaranteed to succeed
    /// (return `n` strided slices) even if `self` has fewer than `n`
    /// elements and if `self.len()` is not a multiple of `n`.
    #[inline]
    pub fn substrides(&self, n: usize) -> Substrides<'a, T> {
        Substrides {
            base: self.base.substrides(n),
        }
    }
    /// Returns a reference to the `n`th element of `self`, or `None`
    /// if `n` is out-of-bounds.
    #[inline]
    pub fn get(&self, n: usize) -> Option<&'a T> {
        self.base.get(n)
    }

    /// Returns an iterator over references to each successive element
    /// of `self`.
    ///
    /// Unlike `MutStrides`, this can return references with the
    /// maximum lifetime without consuming `self` and so an
    /// `into_iter` equivalent is unnecessary.
    #[inline]
    pub fn iter(&self) -> ::Items<'a, T> {
        self.base.iter()
    }

    /// Returns a strided slice containing only the elements from
    /// indices `from` (inclusive) to `to` (exclusive).
    ///
    /// # Panic
    ///
    /// Panics if `from > to` or if `to > self.len()`.
    #[inline]
    pub fn slice(&self, from: usize, to: usize) -> Stride<'a, T> {
        Stride::new_raw(self.base.slice(from, to))
    }
    /// Returns a strided slice containing only the elements from
    /// index `from` (inclusive).
    ///
    /// # Panic
    ///
    /// Panics if `from > self.len()`.
    #[inline]
    pub fn slice_from(&self, from: usize) -> Stride<'a, T> {
        Stride::new_raw(self.base.slice_from(from))
    }
    /// Returns a strided slice containing only the elements to
    /// index `to` (exclusive).
    ///
    /// # Panic
    ///
    /// Panics if `to > self.len()`.
    #[inline]
    pub fn slice_to(&self, to: usize) -> Stride<'a, T> {
        Stride::new_raw(self.base.slice_to(to))
    }
    /// Returns two strided slices, the first with elements up to
    /// `idx` (exclusive) and the second with elements from `idx`.
    ///
    /// This is semantically equivalent to `(self.slice_to(idx),
    /// self.slice_from(idx))`.
    ///
    /// # Panic
    ///
    /// Panics if `idx > self.len()`.
    #[inline]
    pub fn split_at(&self, idx: usize) -> (Stride<'a, T>, Stride<'a, T>) {
        let (l, r) = self.base.split_at(idx);
        (Stride::new_raw(l), Stride::new_raw(r))
    }
}

impl<'a, T> Index<usize> for Stride<'a, T> {
    type Output = T;
    fn index<'b>(&'b self, n: usize) -> &'b T {
        self.get(n).expect("Stride.index: index out of bounds")
    }
}

/// An iterator over `n` shared substrides of a given stride, each of
/// which points to every `n`th element starting at successive
/// offsets.
pub struct Substrides<'a, T: 'a> {
    base: base::Substrides<'a, T>,
}

impl<'a, T> Iterator for Substrides<'a, T> {
    type Item = Stride<'a, T>;
    fn next(&mut self) -> Option<Stride<'a, T>> {
        match self.base.next() {
            Some(s) => Some(Stride::new_raw(s)),
            None => None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.base.size_hint()
    }
}

#[cfg(test)]
#[allow(unused_mut)]
mod tests {
    use super::Stride;
    make_tests!(substrides2, substrides, slice, slice_to, slice_from, split_at, get, iter, );
}