1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
use num_::Integer;
fn wrapping_pow(mut base: u64, mut exp: u32) -> u64 {
let mut acc: u64 = 1;
while exp > 0 {
if exp % 2 == 1 {
acc = acc.wrapping_mul(base)
}
base = base.wrapping_mul(base);
exp /= 2;
}
acc
}
pub fn as_perfect_power(x: u64) -> (u64, u8) {
if x == 0 || x == 1 {
return (x, 1)
}
let floor_log_2 = 64 - x.leading_zeros() as u32 - 1;
let x_ = x as f64;
let mut last = (x, 1);
let mut expn: u32 = 2;
let mut step = 1;
while expn <= floor_log_2 {
let factor = x_.powf(1.0/expn as f64).round() as u64;
if wrapping_pow(factor, expn) == x {
last = (factor, expn as u8);
step = step.lcm(&expn);
}
expn += step;
}
last
}
pub fn as_prime_power(x: u64) -> Option<(u64, u8)> {
let (y, k) = as_perfect_power(x);
if ::is_prime_miller_rabin(y) {
Some((y, k))
} else {
None
}
}
#[cfg(test)]
mod tests {
use Primes;
use super::{as_perfect_power, as_prime_power};
#[test]
fn perfect_and_prime_power() {
let tests = [
(0, (0, 1), false),
(1, (1, 1), false),
(2, (2, 1), true),
(3, (3, 1), true),
(4, (2, 2), true),
(5, (5, 1), true),
(6, (6, 1), false),
(8, (2, 3), true),
(9, (3, 2), true),
(16, (2, 4), true),
(25, (5, 2), true),
(32, (2, 5), true),
(36, (6, 2), false),
(100, (10, 2), false),
(1000, (10, 3), false),
];
for &(x, expected, is_prime) in tests.iter() {
assert_eq!(as_perfect_power(x), expected);
assert_eq!(as_prime_power(x),
if is_prime { Some((expected))} else { None })
}
let sieve = Primes::sieve(200);
let mut primes = sieve.primes();
const MAX: f64 = 0xFFFF_FFFF_FFFF_FFFFu64 as f64;
loop {
let p = match primes.next() {
Some(p) => p as u64,
None => break
};
let subprimes = primes.clone().map(|x| (x, false));
for (q, is_prime) in Some((1, true)).into_iter().chain(subprimes) {
let pq = p * q as u64;
for n in (1..MAX.log(pq as f64) as u32) {
let x = pq.pow(n);
let expected = (pq, n as u8);
assert_eq!(as_perfect_power(x), expected);
assert_eq!(as_prime_power(x),
if is_prime { Some(expected) } else { None });
}
}
}
}
}