1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use wheel;
use streaming::{self, StreamingSieve};
use std::vec;

const ITER_BASE_STEP: usize = 8 * wheel::BYTE_MODULO;

#[cfg(target_pointer_width = "32")]
const SQRT: usize = 1 << 16;
#[cfg(target_pointer_width = "64")]
const SQRT: usize = 1 << 32;
#[cfg(target_pointer_width = "32")]
type Queued = u16;
#[cfg(target_pointer_width = "64")]
type Queued = u32;

enum Early {
    Two,
    Three,
    Five,
    Done,
}

/// An iterator over all primes.
///
/// This will yield primes indefinitely (bits in `usize`
/// permitting). If there is an known upper bound, sieving first with
/// `Sieve` and using its `primes_from` method may be more efficient,
/// especially if the bound is small.
///
/// This requires *O(sqrt(p))* memory to yield prime `p`, where `X` is
/// the maximum value of `usize`.
///
/// # Examples
///
/// ```rust
/// # extern crate primal;
/// let count = primal::Primes::all().take_while(|p| *p < 1_000_000).count();
/// println!("{}", count);
/// ```
pub struct Primes {
    early: Early,
    base: usize,
    current: u64,
    elems: vec::IntoIter<u64>,
    streaming: StreamingSieve,
    sieving_primes: Option<Box<Primes>>,
    left_over: Option<usize>,
}

impl Primes {
    /// The sequence `2, 3, 5, 7, 11, ...`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # extern crate primal;
    /// // print the first 20 primes
    /// for p in primal::Primes::all().take(20) {
    ///     println!("{}", p);
    /// }
    /// ```
    pub fn all() -> Primes {
        Primes::sqrt(SQRT)
    }

    fn sqrt(sqrt: usize) -> Primes {
        let (sieving, limit) = if sqrt < streaming::isqrt(streaming::SEG_LEN) {
            (None, sqrt)
        } else {
            (Some(Box::new(Primes::sqrt(streaming::isqrt(sqrt)))),
             streaming::SEG_LEN)
        };
        let mut streaming = StreamingSieve::new(limit);

        let mut iter = {
            let (_, bits) = streaming.next().unwrap();
            bits.as_u64s().to_owned().into_iter()
        };
        // we manually add the primes
        streaming.small = None;
        // go to the end.
        streaming.limit = !0;

        Primes {
            early: Early::Two,
            base: 0,
            current: iter.next().unwrap(),
            elems: iter,
            streaming: streaming,
            sieving_primes: sieving,
            left_over: None,
        }
    }
}

impl Iterator for Primes {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        match self.early {
            Early::Done => {}
            Early::Two => {
                self.early = Early::Three;
                return Some(2)
            }
            Early::Three => {
                self.early = Early::Five;
                return Some(3)
            }
            Early::Five => {
                self.early = Early::Done;
                return Some(5)
            }
        }

        let mut c = self.current;
        'find_c: while c == 0 {
            for next in &mut self.elems {
                self.base += ITER_BASE_STEP;
                if next != 0 {
                    c = next;
                    break 'find_c
                }
            }
            let low = self.streaming.low;
            let high = low + streaming::SEG_LEN;

            for q in self.left_over.into_iter().chain(self.sieving_primes.as_mut().unwrap()) {
                if q * q > high {
                    self.left_over = Some(q);
                    break
                }
                if q > streaming::isqrt(streaming::SEG_LEN) {
                    self.streaming.add_sieving_prime(q, low);
                }
            }

            match self.streaming.next() {
                Some((_, bits)) => self.elems = bits.as_u64s().to_owned().into_iter(),
                None => return None,
            }


        }

        let lsb = c.trailing_zeros();
        self.current = c & (c - 1);
        let p = self.base + wheel::TRUE_AT_BIT_64[lsb as usize];
        Some(p)
    }
}

#[cfg(test)]
mod tests {
    use Sieve;
    use super::Primes;

    #[test]
    fn equality() {
        let limit = 20_000_000;
        let sieve = Sieve::new(limit);

        let real = sieve.primes_from(0).take_while(|x| *x < limit);
        let computed = Primes::all().take_while(|x| *x < limit);

        let mut i = 0;
        for (r, c) in real.zip(computed) {
            assert_eq!(c, r);
            i += 1;
        }
        assert_eq!(sieve.prime_pi(limit), i);
    }
}

#[cfg(all(test, feature = "unstable"))]
mod benches {
    use super::Primes;
    use test::Bencher;
    fn bench_iterate(b: &mut Bencher, upto: usize) {
        b.iter(|| {
            Primes::all().take_while(|x| *x <= upto).count()
        })
    }

    #[bench]
    fn iterate_small(b: &mut Bencher) { bench_iterate(b, 100) }
    #[bench]
    fn iterate_large(b: &mut Bencher) { bench_iterate(b, 100_000) }
    #[bench]
    fn iterate_huge(b: &mut Bencher) { bench_iterate(b, 10_000_000) }
}