1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
use primal_estimate;
use primal_bit::{BitVec};
use std::{cmp};
use hamming;

use wheel;

pub mod primes;
mod presieve;

/// A heavily optimised prime sieve.
///
/// This is a streaming segmented sieve, meaning it sieves numbers in
/// intervals, extracting whatever it needs and discarding it. See
/// `Sieve` for a wrapper that caches the information to allow for
/// repeated queries, at the cost of *O(limit)* memory use.
///
/// This uses *O(sqrt(limit))* memory, and is designed to be as
/// cache-friendly as possible. `StreamingSieve` should be used for
/// one-off calls, or simple linear iteration.
///
/// The design is *heavily* inspired/adopted from Kim Walisch's
/// [primesieve](http://primesieve.org/), and has similar speed
/// (around 5-20% slower).
///
/// # Examples
///
/// ```rust
/// # extern crate primal;
/// let count = primal::StreamingSieve::prime_pi(123456);
/// println!("𝜋(123456) = {}", count);
/// ```
#[derive(Debug)]
pub struct StreamingSieve {
    small: Option<::Sieve>,
    sieve: BitVec,
    primes: Vec<wheel::State<wheel::Wheel210>>,
    small_primes: Vec<wheel::State<wheel::Wheel30>>,
    large_primes: Vec<wheel::State<wheel::Wheel210>>,
    presieve: presieve::Presieve,

    low: usize,
    current: usize,
    limit: usize,
}

const CACHE: usize = 32 << 10;
const SEG_ELEMS: usize = 8 * CACHE;
const SEG_LEN: usize = SEG_ELEMS * wheel::BYTE_MODULO / wheel::BYTE_SIZE;

fn isqrt(x: usize) -> usize {
    (x as f64).sqrt() as usize
}

impl StreamingSieve {
    /// Create a new instance of the streaming sieve that will
    /// correctly progressively filter primes up to `limit`.
    fn new(limit: usize) -> StreamingSieve {
        let low = 0;

        let elems = cmp::min(wheel::bits_for(limit), SEG_ELEMS);
        let presieve = presieve::Presieve::new(elems);
        let current = presieve.smallest_unincluded_prime();

        let small = if limit < current * current {
            None
        } else {
            Some(::Sieve::new(isqrt(limit) + 1))
        };

        StreamingSieve {
            small: small,
            sieve: BitVec::from_elem(elems, true),
            primes: vec![],
            small_primes: vec![],
            large_primes: vec![],
            presieve: presieve,

            low: low,
            current: current,
            limit: limit
        }
    }
    fn split_index(&self, idx: usize) -> (usize, usize) {
        let len = SEG_ELEMS;
        (idx / len,idx % len)
    }
    fn index_for(&self, n: usize) -> (bool, usize, usize) {
        let (b, idx) = wheel::bit_index(n);
        let (base, tweak) = self.split_index(idx);
        (b, base, tweak)
    }

    /// Count the number of primes upto and including `n`, that is, 𝜋,
    /// the [prime counting
    /// function](https://en.wikipedia.org/wiki/Prime-counting_function).
    ///
    /// # Examples
    ///
    /// ```rust
    /// # extern crate primal;
    /// assert_eq!(primal::StreamingSieve::prime_pi(10), 4);
    /// // the endpoint is included
    /// assert_eq!(primal::StreamingSieve::prime_pi(11), 5);
    ///
    /// assert_eq!(primal::StreamingSieve::prime_pi(100), 25);
    /// assert_eq!(primal::StreamingSieve::prime_pi(1000), 168);
    /// ```
    pub fn prime_pi(n: usize) -> usize {
        match n {
            0...1 => 0,
            2 => 1,
            3...4 => 2,
            5...6 => 3,
            7...10 => 4,
            _ => {
                let mut sieve = StreamingSieve::new(n);
                let (includes, base, tweak) = sieve.index_for(n);
                let mut count = match wheel::BYTE_MODULO {
                    30 => 3,
                    _ => unimplemented!()
                };

                for _ in 0..base {
                    let (_, bitv) = sieve.next().unwrap();
                    let bytes = bitv.as_bytes();
                    count += hamming::weight(bytes) as usize;
                }

                let (_, last) = sieve.next().unwrap();
                count += last.count_ones_before(tweak + includes as usize);
                count
            }
        }
    }

    /// Compute *p<sub>n</sub>*, the `n` prime number, 1-indexed
    /// (i.e. *p<sub>1</sub>* = 2, *p<sub>2</sub>* = 3).
    ///
    /// # Panics
    ///
    /// `n` must be larger than 0 and less than the total number of
    /// primes in this sieve (that is,
    /// `self.prime_pi(self.upper_bound())`).
    ///
    /// # Example
    ///
    /// ```rust
    /// # extern crate primal;
    /// assert_eq!(primal::StreamingSieve::nth_prime(1_000), 7919);
    /// ```
    pub fn nth_prime(n: usize) -> usize {
        assert!(n > 0);
        match n {
            1 => 2,
            2 => 3,
            3 => 5,
            _ => {
                let mut bit_n = n - 3;
                let (_, hi) = primal_estimate::nth_prime(n as u64);
                let mut sieve = StreamingSieve::new(hi as usize);
                while let Some((low, bits)) = sieve.next() {
                    let count = hamming::weight(bits.as_bytes()) as usize;
                    if count >= bit_n {
                        let bit_idx = bits.find_nth_bit(bit_n - 1).unwrap();
                        return low + wheel::from_bit_index(bit_idx)
                    }

                    bit_n -= count
                }
                unreachable!()
            }
        }
    }

    fn add_sieving_prime(&mut self, p: usize, low: usize) {
        if p <= CACHE / 2 {
            self.small_primes.push(wheel::State::new(wheel::Wheel30, p, low));
        } else {
            let elem = wheel::State::new(wheel::Wheel210, p, low);
            if p < CACHE * 5 / 2 {
                self.primes.push(elem)
            } else {
                self.large_primes.push(elem)
            }
        }
    }

    fn find_new_sieving_primes(&mut self, low: usize, high: usize) {
        if let Some(small) = self.small.take() {
            for p in small.primes_from(self.current) {
                if p * p >= high {
                    self.current = p;
                    break
                }
                self.add_sieving_prime(p, low);
            }
            self.small = Some(small);
        }
    }

    fn small_primes_sieve<W: wheel::Wheel>(sieve: &mut BitVec,
                                           small_primes: &mut [wheel::State<W>]) {
        let bytes = sieve.as_bytes_mut();
        for wi in small_primes {
            wi.sieve_hardcoded(bytes);
        }
    }

    fn direct_sieve(&mut self) {
        let bytes = self.sieve.as_bytes_mut();

        let mut iter = self.primes.iter_mut();

        while iter.size_hint().0 >= 3 {
            match (iter.next(), iter.next(), iter.next()) {
                (Some(wi1), Some(wi2), Some(wi3)) => {
                    wi1.sieve_triple(wi2, wi3, bytes);
                }
                _ => unreachable!()
            }
        }
        for wi in iter {
            wi.sieve(bytes)
        }
    }

    fn large_primes_sieve(&mut self) {
        let bytes = self.sieve.as_bytes_mut();

        let mut iter = self.large_primes.iter_mut();

        while iter.size_hint().0 >= 2 {
            match (iter.next(), iter.next()) {
                (Some(wi1), Some(wi2)) => {
                    wi1.sieve_pair(wi2, bytes);
                }
                _ => unreachable!()
            }
        }
        for wi in iter {
            wi.sieve(bytes)
        }
    }

    /// Extract the next chunk of filtered primes, the return value is
    /// `Some((low, v))` or `None` if the sieve has reached the limit.
    ///
    /// The vector stores bits for each odd number starting at `low`.
    /// Bit `n` of `v` is set if and only if `low + 2 * n + 1` is
    /// prime.
    ///
    /// NB. the prime 2 is not included in any of these sieves and so
    /// needs special handling.
    fn next(&mut self) -> Option<(usize, &BitVec)> {
        if self.low >= self.limit {
            return None
        }

        let low = self.low;
        self.low += SEG_LEN;
        let high = cmp::min(low + SEG_LEN - 1, self.limit);

        self.find_new_sieving_primes(low, high);

        self.presieve.apply(&mut self.sieve, low);
        StreamingSieve::small_primes_sieve(&mut self.sieve, &mut self.small_primes);
        self.direct_sieve();
        self.large_primes_sieve();

        if low == 0 {
            // 1 is not prime.
            self.sieve.set(0, false);
            self.presieve.mark_small_primes(&mut self.sieve);
        }

        Some((low, &self.sieve))
    }
}

// module-public but crate-private wrappers, to allow `Sieve` to call these functions.
pub fn new(limit: usize) -> StreamingSieve {
    StreamingSieve::new(limit)
}
pub fn next(sieve: &mut StreamingSieve) -> Option<(usize, &BitVec)> {
    sieve.next()
}

#[cfg(test)]
mod tests {
    use Sieve;
    use primal_slowsieve::Primes;
    use wheel;
    use super::StreamingSieve;
    fn gcd(x: usize, y: usize) -> usize {
        if y == 0 { x }
        else { gcd(y, x % y) }
    }
    fn coprime_to(x: usize) -> Vec<usize> {
        (1..x).filter(|&n| gcd(n, x) == 1).collect()
    }
    #[test]
    fn test() {
        let coprime = coprime_to(wheel::BYTE_MODULO);
        const LIMIT: usize = 2_000_000;
        let mut sieve = StreamingSieve::new(LIMIT);
        let primes = ::primal_slowsieve::Primes::sieve(LIMIT);

        let mut base = 0;
        let mut index = 0;

        while let Some((_low, next)) = sieve.next() {
            for val in next {
                let i = wheel::BYTE_MODULO * base + coprime[index];
                if i >= LIMIT { break }
                assert!(primes.is_prime(i) == val,
                        "failed for {} (is prime = {})", i, primes.is_prime(i));

                index += 1;
                if index == wheel::BYTE_SIZE {
                    index = 0;
                    base += 1
                }
            }
        }
    }
    #[test]
    fn prime_pi() {
        let limit = 2_000_000;
        let real = Primes::sieve(limit);

        for i in (0..20).chain((0..100).map(|n| n * 19998 + 1)) {
            let val = StreamingSieve::prime_pi(i);
            let true_ = real.primes().take_while(|p| *p <= i).count();
            assert!(val == true_, "failed for {}, true {}, computed {}",
                    i, true_, val)
        }
    }

    #[test]
    fn nth_prime() {
        let primes = Sieve::new(2_000_000);

        for (i, p) in primes.primes_from(0).enumerate() {
            let n = i + 1;
            if n < 2000 || n % 1000 == 0 {
                assert_eq!(StreamingSieve::nth_prime(n), p);
            }
        }
    }
}

#[cfg(all(test, feature = "unstable"))]
mod benches {
    use test::Bencher;
    use super::StreamingSieve;

    fn run(b: &mut Bencher, n: usize) {
        b.iter(|| {
            let mut sieve = StreamingSieve::new(n);
            while sieve.next().is_some() {}
        })
    }

    #[bench]
    fn sieve_small(b: &mut Bencher) {
        run(b, 100)
    }
    #[bench]
    fn sieve_medium(b: &mut Bencher) {
        run(b, 10_000)
    }
    #[bench]
    fn sieve_large(b: &mut Bencher) {
        run(b, 100_000)
    }
    #[bench]
    fn sieve_larger(b: &mut Bencher) {
        run(b, 1_000_000)
    }
    #[bench]
    fn sieve_huge(b: &mut Bencher) {
        run(b, 10_000_000)
    }
}