1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use std::collections::{HashMap, HashSet, BinaryHeap};
use std::f64;
use std::hash::Hash;
use std::slice;

use order_stat;

use {Point, RegionQuery, ListPoints, Points};

/// Clustering via the OPTICS algorithm[1].
///
/// > [OPTICS] is an algorithm for finding density-based clusters in
/// spatial data. [...] Its basic idea is similar to DBSCAN, but it
/// addresses one of DBSCAN's major weaknesses: the problem of
/// detecting meaningful clusters in data of varying density.<sup><a
/// href="https://en.wikipedia.org/wiki/OPTICS_algorithm">wikipedia</a></sup>
///
/// An instance of `Optics` represents the dendrogram that OPTICS
/// computes for a data set. Once computed, this dendrogram can then
/// be queried for clustering structure, for example, a clustering
/// similar to the one that would be computed by DBSCAN can be
/// retrieved with `dbscan_clustering`.
///
/// This uses the `P::Point` yielded by the iterators provided by
/// `ListPoints` and `RegionQuery` as a unique identifier for each
/// point. The algorithm will behave strangely if the identifier is
/// not unique or not stable within a given execution of OPTICS. The
/// identifier is cloned several times in the course of execution, so
/// it should be cheap to duplicate (e.g. a `usize` index, or a `&T`
/// reference).
///
/// [1]: Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg
/// Sander (1999). *OPTICS: Ordering Points To Identify the Clustering
/// Structure.* ACM SIGMOD international conference on Management of
/// data. ACM Press. pp. 49–60.
///
/// # Examples
///
/// A basic example:
///
/// ```rust
/// use cogset::{Optics, BruteScan, Euclid};
///
/// let points = [Euclid([0.1]), Euclid([0.2]), Euclid([1.0])];
///
/// let scanner = BruteScan::new(&points);
/// let optics = Optics::new(scanner, 0.2, 2);
///
/// // use the same epsilon that OPTICS used
/// let mut clustering = optics.dbscan_clustering(0.2);
///
/// // get the clusters themselves
/// let mut clusters = clustering.by_ref().collect::<Vec<_>>();
/// // the first two points are the only cluster
/// assert_eq!(clusters, &[&[0, 1]]);
/// // now the noise, which is just the last point
/// assert_eq!(clustering.noise_points(), &[2]);
///
///
/// // cluster again, with a much smaller epsilon
/// let mut clustering = optics.dbscan_clustering(0.05);
///
/// // get the clusters themselves
/// let mut clusters = clustering.by_ref().collect::<Vec<_>>();
/// // no clusters (its less than the smallest distance between points)
/// assert!(clusters.is_empty());
/// // everything is noise
/// assert_eq!(clustering.noise_points(), &[0, 1, 2]);
/// ```
pub struct Optics<P: Points> where P::Point: Hash + Eq + Clone {
    computed_eps: f64,
    min_pts: usize,
    #[allow(dead_code)] points: P,
    order: Vec<P::Point>,
    core_dist: HashMap<P::Point, f64>,
    reachability: HashMap<P::Point, f64>,
}

impl<P: RegionQuery + ListPoints> Optics<P>
    where P::Point: Hash + Eq + Clone
{
    /// Run the OPTICS algorithm on the index `points`, with the `eps`
    /// and `min_pts` parameters.
    ///
    /// The return value can be queried for the actual clustering
    /// structure using, for example, `dbscan_clustering`. The
    /// parameter `eps` is used as a performance enhancement, and
    /// should be made as small as possible for the use-case.
    ///
    /// NB. this computes the clustering dendrogram immediately,
    /// unlike `Dbscan`'s laziness.
    pub fn new(points: P, eps: f64, min_pts: usize) -> Optics<P> {
        let mut processed = HashSet::new();
        let mut order = vec![];
        let mut reachability = HashMap::new();
        let mut core_dist = HashMap::new();
        let mut seeds = BinaryHeap::new();
        for p in points.all_points() {
            seeds.clear();
            seeds.push(Dist { dist: 0.0, point: p });
            while let Some(q) = seeds.pop() {
                if !processed.insert(q.point.clone()) {
                    continue
                }

                let mut neighbours = points.neighbours(&q.point, eps)
                                           .map(|t| Dist { dist: t.0, point: t.1 })
                                           .collect::<Vec<_>>();
                order.push(q.point.clone());
                if let Some(cd) = compute_core_dist(&mut neighbours, min_pts) {
                    core_dist.insert(q.point.clone(), cd);
                    update(&neighbours, cd, &processed, &mut seeds, &mut reachability)
                }
            }
        }
        Optics {
            points: points,
            min_pts: min_pts,
            computed_eps: eps,
            order: order,
            core_dist: core_dist,
            reachability: reachability,
        }
    }

    /// Extract a clustering like one that DBSCAN would give.
    ///
    /// The returned type is similar to the `Dbscan` type: an iterator
    /// over the clusters (as vectors of points), along with the
    /// `noise_points` method to retrieve unclustered points.
    ///
    /// # Panics
    ///
    /// `eps` must be less than the `eps` passed to `new`.
    pub fn dbscan_clustering<'a>(&'a self, eps: f64) -> OpticsDbscanClustering<'a, P> {
        assert!(eps <= self.computed_eps);
        OpticsDbscanClustering {
            noise: vec![],
            order: self.order.iter(),
            optics: self,
            next: None,
            eps: eps,
        }
    }
}

/// An iterator over clusters generated by OPTICS using a DBSCAN-like
/// criterion for clustering.
///
/// This type offers essentially the same interface as `Dbscan`.
pub struct OpticsDbscanClustering<'a, P: 'a + Points>
    where P::Point: 'a + Eq + Hash + Clone
{
    noise: Vec<P::Point>,
    order: slice::Iter<'a, P::Point>,
    optics: &'a Optics<P>,
    next: Option<P::Point>,
    eps: f64,
}

impl<'a, P: Points> OpticsDbscanClustering<'a, P>
    where P::Point: 'a + Eq + Hash + Clone
{
    pub fn noise_points(&self) -> &[P::Point] {
        &self.noise
    }
}
impl<'a, P: RegionQuery + ListPoints> Iterator for OpticsDbscanClustering<'a, P>
    where P::Point: 'a + Eq + Hash + Clone + ::std::fmt::Debug
{
    type Item = Vec<P::Point>;
    #[inline(never)]
    fn next(&mut self) -> Option<Vec<P::Point>> {
        let mut current = Vec::with_capacity(self.optics.min_pts);
        if let Some(x) = self.next.take() {
            current.push(x)
        }

        for p in &mut self.order {
            if *self.optics.reachability.get(p).unwrap_or(&f64::INFINITY) > self.eps {
                if *self.optics.core_dist.get(p).unwrap_or(&f64::INFINITY) <= self.eps {
                    if current.len() > 0 {
                        self.next = Some(p.clone());
                        return Some(current)
                    }
                } else {
                    self.noise.push(p.clone());
                    continue
                }
            }
            current.push(p.clone())
        }
        if current.len() > 0 {
            Some(current)
        } else {
            None
        }
    }
}

#[inline(never)]
fn update<P>(neighbours: &[Dist<P>],
             core_dist: f64,
             processed: &HashSet<P>,
             seeds: &mut BinaryHeap<Dist<P>>,
             reachability: &mut HashMap<P, f64>)
    where P: Hash + Eq + Clone
{
    for n in neighbours {
        if processed.contains(&n.point) {
            continue
        }

        let new_reach_dist = core_dist.max(n.dist);
        let entry = reachability.entry(n.point.clone()).or_insert(f64::INFINITY);
        if new_reach_dist < *entry {
            *entry = new_reach_dist;
            // BinaryHeap is a max-heap, but we need a min-heap
            seeds.push(Dist { dist: -new_reach_dist, point: n.point.clone() })
        }
    }
}

#[derive(Clone)]
struct Dist<P> {
    dist: f64,
    point: P
}
impl<P> PartialEq for Dist<P> {
    fn eq(&self, other: &Dist<P>) -> bool {
        self.dist == other.dist
    }
}
impl<P> Eq for Dist<P> {}
use std::cmp::Ordering;
impl<P> PartialOrd for Dist<P> {
    fn partial_cmp(&self, other: &Dist<P>) -> Option<Ordering> {
        self.dist.partial_cmp(&other.dist)
    }
}
impl<P> Ord for Dist<P> {
    fn cmp(&self, other: &Dist<P>) -> Ordering {
        self.partial_cmp(other).unwrap()
    }
}

fn compute_core_dist<P>(x: &mut [Dist<P>], n: usize) -> Option<f64> {
    if x.len() >= n {
        Some(order_stat::kth(x, n - 1).dist)
    } else {
        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use {Point, BruteScan};
    #[derive(Copy, Clone)]
    struct Linear(f64);
    impl Point for Linear {
        fn dist(&self, other: &Linear) -> f64 {
            (self.0 - other.0).abs()
        }
        fn dist_lower_bound(&self, other: &Linear) -> f64 {
            self.dist(other)
        }
    }

    #[test]
    fn smoke() {
        // 0 ...        .         .... 10 (not to scale)
        let points = [Linear(0.0), Linear(10.0), Linear(9.5), Linear(0.5), Linear(0.6),
                      Linear(9.1), Linear(9.9), Linear(5.0)];
        let points = BruteScan::new(&points);
        let optics = Optics::new(points, 0.8, 3);
        let mut clustering = optics.dbscan_clustering(0.8);
        println!("{:?}", optics.reachability);
        let mut clusters = clustering.by_ref().collect::<Vec<_>>();

        // normalise:
        for x in &mut clusters { x.sort() }
        clusters.sort();


        assert_eq!(clusters, &[&[0usize, 3, 4] as &[_], &[1usize, 2, 5, 6] as &_]);
        assert_eq!(clustering.noise_points().iter().cloned().collect::<Vec<_>>(),
                   &[7]);
    }

    #[test]
    fn reachability_restricted() {
        use std::f64::INFINITY as INF;
        macro_rules! l {
            ($($e: expr),*) => {
                [$(Linear($e),)*]
            }
        }
        let points = l![0.0, 0.01, 10.0, 9.5, 0.6, 0.5, 9.1, 9.9, 5.0, 5.3];
        let scanner = BruteScan::new(&points);
        let optics = Optics::new(scanner, 0.5, 3);

        let expected = [(0.0, INF),
                        (0.01, 0.5),
                        (0.5, 0.49),
                        (0.6, 0.49),
                        (10.0, INF),
                        (9.9, 0.5),
                        (9.5, 0.4),
                        (9.1, 0.4),
                        (5.0, INF),
                        (5.3, INF)];
        assert_eq!(optics.order.len(), points.len());
        for (&idx, &(point, reachability)) in optics.order.iter().zip(&expected) {
            let idx_point = points[idx];
            assert_eq!(idx_point.0, point);

            let computed_r = optics.reachability.get(&idx).map_or(INF, |&f| f);
            assert!((reachability == computed_r) || (reachability - computed_r).abs() < 1e-5,
                    "difference in reachability for {} ({}): true {}, computed {}", idx, point,
                    reachability, computed_r);
        }
    }
    #[test]
    fn reachability_unrestricted() {
        use std::f64::INFINITY as INF;
        macro_rules! l {
            ($($e: expr),*) => {
                [$(Linear($e),)*]
            }
        }
        let points = l![0.0, 0.01, 10.0, 9.5, 0.6, 0.5, 9.1, 9.9, 5.0, 5.3];
        let scanner = BruteScan::new(&points);
        let optics = Optics::new(scanner, 1e10, 3);

        let expected = [(0.0, INF),
                        (0.01, 0.5),
                        (0.5, 0.49),
                        (0.6, 0.49),
                        (5.0, 4.4),
                        (5.3, 4.1),
                        (9.1, 3.8),
                        (9.5, 0.8),
                        (9.9, 0.4),
                        (10.0, 0.4)];

        assert_eq!(optics.order.len(), points.len());
        for (&idx, &(point, reachability)) in optics.order.iter().zip(&expected) {
            let idx_point = points[idx];
            assert_eq!(idx_point.0, point);

            let computed_r = optics.reachability.get(&idx).map_or(INF, |&f| f);
            assert!((reachability == computed_r) || (reachability - computed_r).abs() < 1e-5,
                    "difference in reachability for {} ({}): true {}, computed {}", idx, point,
                    reachability, computed_r);
        }
    }
}

make_benches!(|p, e, mp| super::Optics::new(p, e, mp).dbscan_clustering(e).count());