1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use std::collections::HashSet;
use std::hash::Hash;

use {Point, RegionQuery, ListPoints};

/// Clustering via the DBSCAN algorithm[1].
///
/// > [DBSCAN] is a density-based clustering algorithm: given a set of
/// points in some space, it groups together points that are closely
/// packed together (points with many nearby neighbors), marking as
/// outliers points that lie alone in low-density regions (whose
/// nearest neighbors are too far away).<sup><a
/// href="https://en.wikipedia.org/wiki/DBSCAN">wikipedia</a></sup>
///
/// An instance of `Dbscan` is an iterator over clusters of
/// `P`. Points classified as noise once all clusters are found are
/// available via `noise_points`.
///
/// This uses the `P::Point` yielded by the iterators provided by
/// `ListPoints` and `RegionQuery` as a unique identifier for each
/// point. The algorithm will behave strangely if the identifier is
/// not unique or not stable within a given execution of DBSCAN. The
/// identifier is cloned several times in the course of execution, so
/// it should be cheap to duplicate (e.g. a `usize` index, or a `&T`
/// reference).
///
/// [1]: Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei
/// (1996). Simoudis, Evangelos; Han, Jiawei; Fayyad, Usama M., eds. *A
/// density-based algorithm for discovering clusters in large spatial
/// databases with noise.* Proceedings of the Second International
/// Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI
/// Press. pp. 226–231.
///
/// # Examples
///
/// A basic example:
///
/// ```rust
/// use cogset::{Dbscan, BruteScan, Euclid};
///
/// let points = [Euclid([0.1]), Euclid([0.2]), Euclid([1.0])];
///
/// let scanner = BruteScan::new(&points);
/// let mut dbscan = Dbscan::new(scanner, 0.2, 2);
///
/// // get the clusters themselves
/// let clusters = dbscan.by_ref().collect::<Vec<_>>();
/// // the first two points are the only cluster
/// assert_eq!(clusters, &[&[0, 1]]);
///
/// // now the noise
/// let noise = dbscan.noise_points();
/// // which is just the last point
/// assert_eq!(noise.iter().cloned().collect::<Vec<_>>(),
///            &[2]);
/// ```
///
/// A more complicated example that renders the output nicely:
///
/// ```rust
/// use std::str;
/// use cogset::{Dbscan, BruteScan, Euclid};
///
/// fn write_points<I>(output: &mut [u8; 76], byte: u8, it: I)
///     where I: Iterator<Item = Euclid<[f64; 1]>>
/// {
///     for p in it { output[(p.0[0] * 30.0) as usize] = byte; }
/// }
///
/// // the points we're going to cluster, considered as points in ℝ
/// // with the conventional distance.
/// let points = [Euclid([0.25]), Euclid([0.9]), Euclid([2.0]), Euclid([1.2]),
///               Euclid([1.9]), Euclid([1.1]),  Euclid([1.35]), Euclid([1.85]),
///               Euclid([1.05]), Euclid([0.1]), Euclid([2.5]), Euclid([0.05]),
///               Euclid([0.6]), Euclid([0.55]), Euclid([1.6])];
///
/// // print the points before clustering
/// let mut original = [b' '; 76];
/// write_points(&mut original, b'x', points.iter().cloned());
/// println!("{}", str::from_utf8(&original).unwrap());
///
/// // set-up the data structure that will manage the queries that
/// // Dbscan needs to do.
/// let scanner = BruteScan::new(&points);
///
/// // create the clusterer: we need 3 points to consider a group a
/// // cluster, and we're only looking at points 0.2 units apart.
/// let min_points = 3;
/// let epsilon = 0.2;
/// let mut dbscan = Dbscan::new(scanner, epsilon, min_points);
///
/// let mut clustered = [b' '; 76];
///
/// // run over all the clusters, writing each to the output
/// for (i, cluster) in dbscan.by_ref().enumerate() {
///     // since we used `BruteScan`, `cluster` is a vector of indices
///     // into `points`, not the points themselves, so lets map back
///     // to the points.
///     let actual_points = cluster.iter().map(|idx| points[*idx]);
///
///     write_points(&mut clustered, b'0' + i as u8,
///                  actual_points)
/// }
/// // now run over the noise points, i.e. points that aren't close
/// // enough to others to be in a cluster.
/// let noise = dbscan.noise_points();
/// write_points(&mut clustered, b'.',
///              noise.iter().map(|idx| points[*idx]));
///
/// // print the numbered clusters
/// println!("{}", str::from_utf8(&clustered).unwrap());
/// ```
///
/// Output:
///
/// ```txt
///  x x   x        x x        x   x x  x   x       x      x x  x              x
///  0 0   0        . .        2   2 2  2   2       .      1 1  1              .
/// ```
pub struct Dbscan<P: RegionQuery + ListPoints> where P::Point: Hash + Eq + Clone {
    visited: HashSet<P::Point>,
    in_cluster: HashSet<P::Point>,
    unclustered: HashSet<P::Point>,
    points: P,
    all_points: P::AllPoints,
    eps: f64,
    min_points: usize,
}

impl<P: RegionQuery + ListPoints> Dbscan<P> where P::Point: Hash + Eq + Clone {
    /// Create a new DBSCAN instance, with the given `eps` and
    /// `min_points`.
    ///
    /// `eps` is the maximum distance between points when creating
    /// neighbours to construct clusters. `min_points` is the minimum
    /// of points for a cluster.
    ///
    /// This does not perform any significant computation immediately;
    /// clusters are found on the fly via the `Iterator` instance.
    pub fn new(points: P, eps: f64, min_points: usize) -> Dbscan<P> {
        Dbscan {
            all_points: points.all_points(),
            points: points,
            eps: eps,
            min_points: min_points,
            visited: HashSet::new(),
            in_cluster: HashSet::new(),
            unclustered: HashSet::new(),
        }
    }

    /// Points that have been classified as noise once the algorithm
    /// finishes.
    ///
    /// This only makes sense to call once the iterator is exhausted,
    /// and will give unspecified nonsense if called earlier.
    pub fn noise_points(&self) -> &HashSet<P::Point> {
        &self.unclustered
    }
}

impl<P: RegionQuery + ListPoints> Iterator for Dbscan<P> where P::Point: Hash + Eq + Clone {
    type Item = Vec<P::Point>;
    fn next(&mut self) -> Option<Vec<P::Point>> {
        let mut nbrs;
        loop {
            match self.all_points.next() {
                Some(p) => {
                    if self.visited.insert(p.clone()) {
                        let n = self.points.neighbours(&p, self.eps).collect::<Vec<_>>();
                        if n.len() >= self.min_points {
                            nbrs = n;
                            break
                        } else {
                            self.unclustered.insert(p);
                        }
                    }
                }
                None => return None
            }
        }

        let mut cluster = vec![];

        for idx in 0.. {
            if idx >= nbrs.len() { break }
            let (_, p2) = nbrs[idx].clone();
            if self.visited.insert(p2.clone()) {
                let old_len = nbrs.len();
                nbrs.extend(self.points.neighbours(&p2, self.eps));
                if nbrs.len() - old_len < self.min_points {
                    // undo: the new point doesn't have enough close
                    nbrs.truncate(old_len)
                }
            }
            if self.in_cluster.insert(p2.clone()) {
                self.unclustered.remove(&p2);
                cluster.push(p2);
            }
        }
        Some(cluster)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use {Point, BruteScan};

    struct Linear(f64);
    impl Point for Linear {
        fn dist(&self, other: &Linear) -> f64 {
            (self.0 - other.0).abs()
        }
        fn dist_lower_bound(&self, other: &Linear) -> f64 {
            self.dist(other)
        }
    }

    #[test]
    fn smoke() {
        // 0 ...        .         .... 10 (not to scale)
        let points = [Linear(0.0), Linear(10.0), Linear(9.5), Linear(0.5), Linear(0.6),
                      Linear(9.1), Linear(9.9), Linear(5.0)];
        let points = BruteScan::new(&points);
        let mut dbscan = Dbscan::new(points, 0.5, 3);
        let mut clusters = dbscan.by_ref().collect::<Vec<_>>();

        // normalise:
        for x in &mut clusters { x.sort() }
        clusters.sort();


        assert_eq!(clusters, &[&[0usize, 3, 4] as &[_], &[1usize, 2, 5, 6] as &_]);
        assert_eq!(dbscan.noise_points().iter().cloned().collect::<Vec<_>>(),
                   &[7]);
    }
}

make_benches!(|p, e, mp| super::Dbscan::new(p, e, mp).count());