1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#[allow(dead_code)]; //! Precise GC on the heap. //! //! Very slow. use ffi; use ffi::GC_word; use std::{mem, vec, libc, cell}; use std::unstable::intrinsics; // macros from gc_typed.h /// The size of the words understood by the GC, in bits. #[inline] pub fn GC_WORDSZ() -> uint { 8 * mem::size_of::<GC_word>() } fn GC_get_bit(bm: &[GC_word], index: uint) -> bool { let wrd_sz = GC_WORDSZ(); ((bm[index / wrd_sz] >> (index % wrd_sz)) & 1) == 1 } fn GC_set_bit(bm: &mut [GC_word], index: uint) { let wrd_sz = GC_WORDSZ(); bm[index / wrd_sz] |= 1 << (index % wrd_sz); } fn GC_WORD_LEN<T>() -> uint { mem::size_of::<T>() / mem::size_of::<GC_word>() } fn GC_BITMAP_SIZE<T>() -> uint { (GC_WORD_LEN::<T>() + GC_WORDSZ() - 1) / GC_WORDSZ() } /// Construct a tracing descriptor out of the `bitmap`, which should /// be true for each word that is possibly a pointer. pub fn make_descriptor(bitmap: &[bool]) -> ffi::GC_descr { // TODO, should make sure `bm` is long enough let wrd_sz = GC_WORDSZ(); let l = bitmap.len(); macro_rules! go ( ($cmprs:expr) => { { let mut compressed = $cmprs; for (word_idx, &is_ptr) in bitmap.iter().enumerate() { if is_ptr { GC_set_bit(compressed, word_idx) } } unsafe { ffi::GC_make_descriptor(compressed.as_mut_ptr(), l as GC_word) } } } ); if l < wrd_sz * 2 { go!([0 as GC_word, .. 2]) } else { go!(vec::from_elem((l + wrd_sz - 1) / wrd_sz, 0 as GC_word)) } } /// A pointer that uses type information to inform the GC about what /// things could possibly be pointers, and what can just be ignored. /// /// That is, run Boehm in precise-on-the-heap mode. #[no_send] #[deriving(Clone)] pub struct GcTracing<T> { priv ptr: *mut T, //priv force_managed: Option<@()> } impl<T: BoehmTraced> GcTracing<T> { /// Create a new GcTracing. /// /// NB. this extracts the type information at runtime, for each /// allocation, and so is quite slow. /// /// TODO: fix that (requires compiler hooks) pub fn new(value: T) -> GcTracing<T> { unsafe { let size = mem::size_of::<T>() as libc::size_t; let p = if cfg!(debug) { ffi::GC_debug_malloc(size, bytes!("GcTracing", 0).as_ptr() as *i8, 0) } else { ffi::GC_malloc_explicitly_typed(size, BoehmTraced::get_tracing_descr(None::<T>)) } as *mut T; if p.is_null() { fail!("Could not allocate") } intrinsics::move_val_init(&mut *p, value); GcTracing { ptr: p, //force_managed: None } } } #[inline] pub fn borrow<'r>(&'r self) -> &'r T { unsafe { &*self.ptr } } } /// Values that the precise-on-heap Boehm collector can understand. /// /// This trait is a stop-gap until the compiler itself can generate /// such information, since writing these by hand is annoying, and /// nearly impossible to get correct without dirty hacks to find /// alignment of fields and extract (for example) the enum /// optimisation that have occurred (and even then, they're likely to /// no be correct). pub trait BoehmTraced { /// Construct the `GC_descr` of `Self`. This should not be /// overriden. fn get_tracing_descr(dummy: Option<Self>) -> ffi::GC_descr { let sz = mem::size_of::<Self>() * 8; let wrd_sz = GC_WORDSZ(); let num_words = sz / wrd_sz; if num_words < 16 { let mut vec = [false, .. 16]; BoehmTraced::indicate_ptr_words(dummy, vec); make_descriptor(vec.slice_to(num_words)) } else { let mut vec = vec::from_elem(num_words, false); BoehmTraced::indicate_ptr_words(dummy, vec); make_descriptor(vec) } } /// Mark which words within `Self` can possibly hold relevant /// pointers (do *not* explicitly mark which words are not /// pointers). /// /// E.g. `struct Foo { x: uint, y: GcTracing<uint>, z: /// GcTracing<uint> }` should explicitly set `words[1]` and /// `words[2]` to `true` but leave `words[0]` untouched. /// /// As long as `get_tracing_descr` is not overridden, /// `words` is guaranteed to be large enough to hold all the words /// in the current type. fn indicate_ptr_words(_dummy: Option<Self>, words: &mut [bool]); } impl<T> BoehmTraced for GcTracing<T> { #[inline] fn indicate_ptr_words(_dummy: Option<GcTracing<T>>, words: &mut [bool]) { // GcTracing is one word, and is (clearly) a pointer relevant // to the GC. words[0] = true; } } // things that aren't pointers at all macro_rules! no_ptr { ($($t:ty),*) => { $( impl BoehmTraced for $t { // no words are pointers #[inline] fn indicate_ptr_words(_: Option<$t>, _: &mut [bool]) {} } )* } } no_ptr! { int, i8, i16, i32, i64, uint, u8, u16, u32, u64, f32, f64, () } // paradoxically, these don't count as having GC pointer words. impl<T> BoehmTraced for *T { #[inline] fn indicate_ptr_words(_: Option<*T>, _: &mut [bool]) {} } impl<T> BoehmTraced for *mut T { #[inline] fn indicate_ptr_words(_: Option<*mut T>, _: &mut [bool]) {} } // for interior mutability impl<T: BoehmTraced> BoehmTraced for cell::RefCell<T> { #[inline] fn indicate_ptr_words(_dummy: Option<cell::RefCell<T>>, words: &mut [bool]) { let l = words.len(); // the last word is not a pointer, and is not part of the `T`. BoehmTraced::indicate_ptr_words(None::<T>, words.mut_slice_to(l - 1)); } } // likely incorrect impl<T: BoehmTraced> BoehmTraced for Option<T> { #[inline] fn indicate_ptr_words(_dummy: Option<Option<T>>, words: &mut [bool]) { // what's this "parametric polymorphism" thing? ;) let discr_size = mem::size_of::<Option<T>>() - mem::size_of::<T>(); if discr_size * 8 >= GC_WORDSZ() { // we have a proper discriminant, so T might contain pointers BoehmTraced::indicate_ptr_words(None::<T>, words.mut_slice_from(1)) } else { // we don't have a big discriminant, so we're either a // nullable pointer, or a small non-word aligned type. (In // the latter case, we don't contain any pointers so we // could probably actually elide this call... but we'll // just let the optimiser do that.) BoehmTraced::indicate_ptr_words(None::<T>, words) } } } // impls for fixed length vectors for a selection of lengths macro_rules! fixedvec { ($($n:expr),*) => { $( impl<T: BoehmTraced> BoehmTraced for [T, .. $n] { fn indicate_ptr_words(_dummy: Option<[T, .. $n]>, words: &mut [bool]) { if $n == 0 { return } let bits_per_step = 8 * mem::size_of::<[T, .. $n]>() / $n; let words_per_step = bits_per_step / GC_WORDSZ(); if words_per_step > 0 { for chunk in words.mut_slice_to(words_per_step * $n) .mut_chunks(words_per_step) { BoehmTraced::indicate_ptr_words(None::<T>, chunk) } } } } )* } } macro_rules! fixedvec_lots { (; $($n:tt),*) => { fixedvec!($($n),*) }; ([$e:expr] $([$x:expr])* ; $($n:tt),*) => { // binary expansion fixedvec_lots!($([$x])* ; $( (2 * $n + 1), (2 * $n) ),*) } } // generate tracing info for all the short fixed length vectors. // NB. this crashes rustdoc. //fixedvec_lots!([1] [2] [4] [16] [32] [64]; 0) // and some long ones fixedvec!(100, 1000, 10_000, 100_000, 1_000_000)